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Abstract

Voice conversion (VC) is a technique that can transform the characteristics of the

source speech into that of the target speech such that the linguistic contents are pre-

served. As conventional VC models perform conversion in a frame-wise manner, i.e. the

converted speech always has the same length as that of the source speech, VC based on

sequence-to-sequence (seq2seq) modeling has become attractive in recent years, owing

to their ability to convert suprasegmental characteristics such as prosody and speaker

rate. Nonetheless, one major problem is that the practical amount of data in VC is too

limited for seq2seq models. Such data-hungry property causes low intelligibility in the

converted speech, making seq2seq VC far from practical. In this thesis, we study how

to apply the technique of transfer learning, which is a common yet effective concept in

machine learning that alleviates data deficiency.

In the first part of this thesis, we present a naive approach that concatenates an

automatic speech recognition (ASR) model and a text-to-speech (TTS) model. The

input speech is first transcribed with the ASR model, and the recognition result is then

used to generate the voice of the target with the TTS model. Thanks to the massive

amount of data and the mature development in the two respective fields, VC can benefit

from transferring knowledge of readily trained ASR and TTS models, thus improving

data efficiency. This method was employed as the seq2seq baseline system for the voice

conversion challenge (VCC) 2020, and we utilized ESPnet, an open-source end-to-end
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speech processing toolkit, and the many well-configured pretrained models provided

by the community. We demonstrate that such a method can successfully perform

conversion using only 5 min of training data, and the official evaluation results showed

that the system came out top among the participating teams in terms of conversion

similarity, serving as a strong baseline system.

In the second part, instead of separately training two models, we proposed to op-

timize one unified model by a novel pretraining technique that, similarly, transfers

knowledge from ASR and TTS. We argued that the essential ability of a VC model,

i.e, the generation and utilization of fine representations, can be facilitated by a two-

step pretraining-finetuning scheme using either ASR or TTS. The pretraining process

provides a prior for fast, sample-efficient VC model learning, thus reducing the data

size requirement and training time. We demonstrate that the VC model initialized

with pretrained model parameters can generate high-quality, highly intelligible speech

even with limited training data.





1 Introduction

1.1 General background

Voice conversion (VC) aims to convert the speech from a source to that of a target

without changing the linguistic content [1]. Speaker voice conversion [2] is a typical

type of VC and refers to the process of converting speech from a source speaker to a

target speaker. In addition, a wide variety of applications could be solved by applying

VC, such as accent conversion [3], personalized speech synthesis [4,5], and speaking-aid

device support [6–8].

As an ultimate goal, unconstrained speech communication is one of the most im-

portant application of VC. The physical condition of the human body often limits the

production of speech [9] as shown in Figure 1.1. For instance, damaged speech organs

cause severe vocal disorders. Or, the deficient control of the organs can end up with

an accented voice while the intention is to speak a foreign language natively. What

if we can recover disabled functions, or even augment our body to enhance commu-

nication abilities? By building VC systems such as speaking aid devices to convert

electrolaryngeal (EL, restored using an electronic device) speech to the original voices

of patients with vocal cord damage [6] or converting accented speech of foreigners into

native speech [10], speech communication can be made beyond physical constraints.

A typical framework of VC adopts an analysis—conversion —synthesis paradigm

[11], as decipted in Figure 1.2. First, a high-quality vocoder such as WORLD [12]
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Figure 1.1: Illustration of the limits of speech communication, and how voice conversion

can break the barrier.

or STRAIGHT [13] is utilized to extract different acoustic features, such as spectral

features and fundamental frequency (F0). These features are converted separately, and

a waveform synthesizer finally generates the converted waveform using the converted

features.

Numerous VC approaches have been proposed. The Gaussian mixture model (GMM)-

based method [11,14] has been a popular statistical approach that estimates the joint

density of the source-target feature vectors, which requires a training procedure and

has a well-known disadvantage that the converted outputs generally suffer from an

over-smoothing issue. Frequency warping methods, such as vocal tract length normal-

ization [15], weighted frequency warping [16] and dynamic frequency warping [17], are

able to keep spectral details while providing inferior speaker identity conversion qual-

ity to that of statistical approaches. Exemplar-based methods [18–22] require much

less training data and are capable of modeling the high-dimensional spectra. In recent

years, deep neural networks (DNNs) have established supremacy in a wide range of
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Figure 1.2: A general VC framework realizing the analysis—conversion —synthesis

paradigm.

research fields, including VC [23–26]. DNNs have been utilized for not only spectral

mapping but also neural vocoding [27–29]. It has been shown that employing neural

vocoders as the waveform generation module can greatly improve the performance of

VC systems [30–35].

However, most of the approaches described above suffer from two limitations. First,

it was long believed that the spectral property plays an important role in characterizing

speaker individuality. As a result, as shown in Figure 1.3, most efforts were dedicated

in spectral conversion, while only a simple linear transformation was applied to F0,

limiting the modeling of various speaker characteristics. Second, conversion was usually

performed frame-by-frame, i.e, the converted speech and the source speech share the

same length as well as temporal structure. This restricts the modeling of the speaking

rate and style such as short pause pattern. To summarize, the conversion of prosody,

including F0 and duration, is overly simplified in the literature.
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Figure 1.3: Illustration of a VC system performing conversion w.r.t. different feature

streams.

This is where sequence-to-sequence (seq2seq) models [36] can play a role. Modern

seq2seq models, often equipped with an attention mechanism [37,38] to implicitly learn

the alignment between the source and output sequences, can generate outputs of various

lengths and capture long-term dependencies. This ability makes the seq2seq model a

natural choice to convert prosody in VC. It has been shown that seq2seq VC models

can outperform conventional frame-wise VC systems, especially in terms of conversion

similarity [39–41]. This is owing to the fact that the suprasegmental characteristics

of F0 and duration patterns well handled in seq2seq VC models are closely correlated

with the speaker identity.

Despite the promising results, seq2seq VC models suffer from a data-hungry preperty.

In the literature, seq2seq models usually require a large amount of training data to gen-

eralize well, with a requirement of more than 1000 utterances (approximately 1 hour) of

data. However, it is impractical to collect such a large parallel VC corpus. For example,

in the past voice conversion chellenges (VCCs) [42–44], at most 160 utterances (approx-

imately 10 min of speech data) were given, which is much less than the 1000 utterances



1.2. Related work 5

required by seq2seq models. As a result, as pointed out in [45], the attention learning

fails as the amount of training data decreases, causing mispronunciations and other

linguistic-inconsistency problems such as inserted, repeated and skipped phonemes in

the converted speech. It is therefore essential to develop sample efficient seq2seq VC

systems.

One popular means of dealing with the problem of limited training data is transfer

leaning, where knowledge from massive, out-of-domain data is utilized to aid learning

in the target domain. Thanks to the big data era, transfer learning has been made

easy since it is easy to collect a huge amount of data. In this thesis, we propose two

novel appraoches that solves the data deficiency problem by transfering knowledge

from two speech processing tasks, namely automatic speech recognition (ASR) and

text-to-speech (TTS).

1.2 Related work

1.2.1 Transfer learning from automatic speech recognition and

text-to-speech to voice conversion

In speech processing, ASR and TTS are two of the most active research fields, and

the research community has dedicated an enumerous effort to open-sourcing public

available datasets. It was shown, in [46], that a sufficient amount of efforts has been

dedicated to transferring knowledge from ASR [47–51] and TTS [52–54].to improving

various aspects of VC, regardless of using a seq2seq model or not. However, few of

the abovementioned studies showed how the proposed methods can solve the data

deficiency problem in seq2seq VC, which is the main goal of this thesis.
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1.2.2 Data deficiency in sequence-to-sequnece voice conver-

sion

In VC, it is common to limit the size of training data to around 5 or 10 minutes

[42,43], wherein existing seq2seq VC literature, approximately 1 hour of data is usually

used. Even with such amount of data, it is still required to resort to certain techniques

to successfully train seq2seq VC models. These techniques can be categorized into the

followings:

Extra module. Many have utilized an external ASR module pretrained on a large

dataset during training and runtime. For example, the phonetic posteriorgram (PPG)

extracted from ASR is a commonly used linguistic clue in VC [55], and can be used as

the only input [56] or as an additional clue [40,45] in seq2seq VC. On the other hand,

Parrotron [57] used an external TTS system to generate artificial data from a large

hand-transcribed corpus for training an any-to-one (normalization) VC model. The

disadvantage of using external modules is that the performance depends on the extra

module. The accuracy of the PPG and the quality of the TTS system can bound the

performance of the final VC system.

Text label of training data. Text labels provide strong supervision to ensure linguis-

tic consistency. Methods utilizing such labels include multitask learning meaningful

hidden representation [45, 57, 58], data augmentation [45] or representations disentan-

glement [58]. Yet, labeling errors and failed force alignments might cause potential

performance degradation.

Regularization. As multitask learning and feature disentanglement can be seen as

regularizations, some have also proposed to impose constraints on the model without

any external resources. [39, 59] proposed the context preservation loss and the guided

attention loss, and [56] proposed to use local attention to stabilize training. Nonethe-
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less, such regularization often requires rigorous weight tuning.

1.3 Thesis scope

In this thesis, we propose two methods for transferring knowledge from ASR and

TTS to tackle the data deficiency problem in seq2seq VC. To better understand the

motivation of these two methods, we first provide a unified perspective of voice conver-

sion w.r.t. the information in speech. Then, we elaborate on how the two approaches

proposed in this thesis connect to the information perspective. Finally, in Table 1.1

we compare the two methods w.r.t. the three techniques described in Section 1.2.2 for

tackling the data deficiency problem in seq2seq VC.

1.3.1 Information perspective of voice conversion

Roughly speaking, speech consists of the linguistic contents and the speaker identity.

The goal of VC is to remove the source speaker information from the source speech, and

then inject the identity of the target speaker. As depicted in Figure 1.4, an ideal VC

system would then consist two components: the recognition module and the synthesis

module, where the two components perform the abovementiond respective actions. It is

therefore essential for a successful VC model to find a speaker-independent intermediate

feature space that purely reflects the linguistic contents. Such property is, however,

hard to facilitate in VC, especially when an seq2seq model is employed, since only a

parallel corpus is used. We argue that, with the help of external data and knowledge,

this property may be easier to capture.
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Figure 1.4: An information perspective of voice conversion, and a summarization of

the methods discussed in this thesis.

1.3.2 Method 1: Concatenate separately optimized ASR and

TTS models

Our first approach is a rather naive approach, which is to directly concatenate an

ASR model and a TTS model, trained using separate, large-scale corpora in the re-

spective fields. As mentioned in Section 1.1, ASR and TTS are two of the most active

research fields in speech processing, and there are carefully curated datasets designed

for the respective tasks, which are easier to collect compared to the parallel datasets re-

quired by VC. It is therefore expected that the use of the massive external corpora can
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boost the VC performance. On the other hand, from the model point of view, seq2seq

modeling is naturely suitable for modeling the mapping function between speech and

text considering the time resolution and temporal structure, thus modern ASR and

TTS systems often employ seq2seq models. As a result, although the concept of con-

catenating ASR and TTS models itself is not novel, it is still worthwhile revisiting this

method using state-of-the-art seq2seq models to form a seq2seq VC system as a whole.

To demonstrate the effectiveness of this simple method, we adopted this system

as one of the baseline systems of the voice conversion challenge (VCC) 2020. The

official listening test results revealed that the ASR+TTS method served as a strong

and competitive baseline, ranking 2nd in terms of speaker similarity among the 30

participating teams.

As shown in Table 1.1, this method requires the ASR and TTS modules during both

training and runtime conversion to generate and make use of the text. In addition,

text label of the training data is required for the ASR and TTS training.

1.3.3 Method 2: Optimize one unified model

One obvious fallback of the cascade system described in Section 1.3.2 is that the

ASR and TTS models are optimzied separately, and it is generally believed that an

unified system would perform better. In the second method, we focus on optimizing

one seq2seq model, and propose pretraining strategies utilizing ASR and TTS to alle-

viate the data deficiency problem. Considering that TTS and ASR both aim to find a

mapping between text and speech, as the former tries to add speaker information to the

source while the latter tries to remove, we suspect that the intermediate hidden repre-

sentation spaces of these two tasks contain somewhat little speaker information, and

serve as a suitable fit for VC. The ability of the pretraining technique to alleviate the
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Table 1.1: Comparison of the two methods proposed in this thesis.

Extra module
Text label of training data Regularization

Method Training Runtime

Method 1 ✓ ✓ ✓ –

Method 2 ✓ – – optional

data deficiency problem was confirmed in the experiments, as it was shown that mod-

els with pretraining could significantly improve several metrics including naturalness,

speaker similarity and intelligibility.

As shown in Table 1.1, this method requires the ASR or TTS module during training,

but only the final VC model is required during runtime conversion. The text label of

the VC training data is not required. Regularization is an optional choice, as it can

further improve the VC performance but not necessary.

1.4 Thesis overview

This thesis is organized as follows. In Chapter 2, we introduce the basics of seq2seq

modeling in VC, including two model architectures, namely the rerurrent neural net-

work (RNN)-based and Transformer-based models. In Chapter 3, we describe the

implementation of the ASR+TTS framework, and the official evaluation results in

VCC2020. In Chapter 4, the pretraining technique the transfers knowledge from ASR

and TTS to an unified seq2seq VC modeling framework is presented. Finally, in Chap-

ter 5, the contributions of this thesis are summarized and future work is discussed.



2 Sequence-to-Sequence Modeling

for Text-to-Speech and Voice

Conversion

This section provides descriptions on basics of seq2seq modeling for TTS and VC.

Both falling in the category of speech synthesis, TTS and VC take different modali-

ties as input but share a common goal of synthesizing speech waveform, as depicted

in Figure 2.1. As a result, the model architecture is very similar, and one can easily

make a few modifications to a TTS model to form a model for VC. Thus, we first pro-

vide a unified formulation of seq2seq modeling for speech synthesis, and some common

components shared by the models. Then, we introduce two seq2seq VC model architec-

tures that are used in this work. The first one is based on the recurrent neural network

(RNN), which was used in the very first seq2seq models, as well as many seq2seq VC

models [39,40,45,56–58,60]. The second one is the Transformer architecture [61], which

has shown promising results in many speech processing tasks, including VC.

2.1 Unified seq2seq modeling for TTS and VC

Seq2seq models learn a mapping between a source feature sequence X = x1:n =

(x1, · · · ,xn) and a target feature sequence Y = y1:m = (y1, · · · ,ym) which are often of

different length, i.e, n ̸= m. In the case of TTS, the input can be a character or word
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Figure 2.1: Illustration of the input and output modalities of TTS and VC.

sequence, and in the case of VC, the input can be an acoustic feature sequence such as a

log mel-spectrogram. The output for both tasks is always an acoustic feature sequence.

As with most seq2seq models, ours also has an encoder—decoder structure [36]. For

instance, Figure 2.2 depicts the general structure of a seq2seq VC model.

The encoder (Enc) first maps the input feature sequence x1:n into a sequence of

hidden representations:

H = h1:n = Enc(x1:n). (2.1)

The decoder (Dec) is autoregressive, which means that when decoding the current

output yt, in addition to the encoder output, i.e. the hidden representations h1:n, the

previously generated features y1:t−1 are also considered:

yt = Dec(h1:n,y1:t−1). (2.2)

Some extra components and techniques are adopted in the seq2seq model to improve

performance and stabilize training, most of which are inspired by the success of modern

seq2seq TTS models [62,63].
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Encoder

Decoder

Linear
Projection

Linear
Projection

Postnet

Output Log-mel 
Spectrogram
Predictions

Stop Token
Predictions

Output Log-mel
Spectrograms

Input Log-mel
Spectrograms

Decoder
Prenet

Hidden
Representation

Figure 2.2: Illustration of the unified seq2seq VC model architecture and the shared

components.

• A prenet containing 2 fully connected layers is added to the decoder, which serves

as an information bottleneck essential for learning the autoregressive decoder.

• A linear projection layer is used to project the decoder output to have the desired

dimension. To learn when to stop decoding, a separate linear projection layer

is used to predict a stopping probability, which can be used with a threshold to

decide when to stop decoding during inference

• To compensate for the missing context information in the autoregressive decoder,

a five-layer CNN postnet is used to predict a residual that is added to the pro-

jected output.
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LSTM 1024

Location Sensitive
Attention RNN

Linear
Projection

Conv 5x1x512

Bi-LSTM 512

3x
2x

Figure 2.3: RNN-based encoder and decoder.

• Introducing the reduction factor r greatly helps speed up convergence and re-

duce training time and memory footprint. Specifically, at each decoding step,

r non-overlapping frames are predicted. Since adjacent speech frames are often

correlated, this technique allows the decoder to correctly model the interaction

with the hidden representation sequence.

The training objectives include an L1 and L2 loss, in combination with a weighted

binary cross-entropy loss on the stop token prediction and additional objectives that

stablizes training. The whole network is composed of neural networks and optimized

via backpropagation.

2.2 RNN-based model

Our RNN-based seq2seq VC model is based on the Tacotron2 TTS model [63] and

resembles the work in [39]. The encoder first linearly projects the input log-mel spectro-

gram, followed by a stack of convolutional layers, batch normalization, and ReLU acti-

vations. The output of the final convolutional layer is then passed into a bi-directional
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LSTM layer to generate the hidden representations.

For each decoder output step, an attention mechanism [37, 38] is used to attend

to different positions of the hidden representation sequence. First, a context vector

ct is calculated as a weighted sum of h1:n, where the weight is represented using an

attention probability vector at = (a
(1)
t , · · · , a(n)t ). Each attention probability a

(k)
t can

be thought of as the importance of the hidden representation hk at the current time

step. As in Tacotron2, we adopt the location-sensitive attention [64], which takes

cumulative attention weights from previous decoder time steps as an additional feature

to encourage a forward consistency to prevent repeated or missed phonemes. The

context vector is then concatenated with the prenet output and passed into a stacked

uni-directional LSTM network to predict the r output frames. The above-mentioned

procedure can be formulated as follows:

at = attention(qt−1,h1:n), (2.3)

ct =
n∑

k=1

a
(n)
t hk, (2.4)

yt, qt = Dec(y1:t−1, qt−1, ct). (2.5)

2.2.1 Guided Attention Loss

For seq2seq speech synthesis models, the attention alignment is usually monotonic

and linear, so a guided attention loss that encourages the attention matrix to be diag-

onal can speed up attention learning and convergence [39,65]. The assumption is that

the i-th element in the input feature sequence progresses nearly linearly with respect to

the j-th element of the output feature sequence, i.e., i ∼ αj, where α ∼ n
m
. Therefore,

the attention matrix A = [a1, · · · ,am] should be a nearly diagonal. We may therefore
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define a penalty matrix G:

gi,j = 1− exp

{
−( i

n
− j

m
)2

2σ2
g

}
, (2.6)

where σg controls how close A is to a diagonal matrix. The guided attention loss Lga

is then defined as

Lga = λga||G⊙ A||1, (2.7)

where ⊙ indicates an element-wise product and λga is the weight for the guided atten-

tion loss.

2.2.2 Context Preservation Loss

In [39], in addition to the guided attention loss, a context preservation loss was

further applied to maintain linguistic consistency after conversion. Specifically, to

encourage the source encoder generate meaningful hidden representations, we introduce

two additional networks as a context preservation mechanism: a source decoder SrcDec

for reconstructing the source feature sequence from the hidden representations, and a

target decoder TarDec for predicting the target feature sequence from the context

vectors, C = [c1, · · · , cm]:

X̃ = SrcDec(H), (2.8)

Ỹ = TarDec(C). (2.9)

The context preservation loss is then defined as:

Lcp = λcp(||X̃ −X||1 + ||Ỹ − Y ||1), (2.10)

where λcp is the weight for the context preservation loss.
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Figure 2.4: Transformer-based encoder and decoder.

2.3 Transformer-based model

Our Transformer-based seq2seq VC model, which we refer to as the Voice Trans-

former Network (VTN), is based on the Transformer architecture [61], which was orig-

inally designed for machine translation but also widely applied to other sequential

modeling problems. There are several core components of the Transformer:

Multi-head attention (MHA) sublayer. The MHA layer is defined as:

MHA(Q,K, V ) = [head1, · · · , headh]W
O, (2.11)

headi = Att(QWQ
i , KWK

i , V W V
i ), (2.12)

where Q, K and V denote the input matrices that, following [61], are referred to as the

query, key and value, respectively. MHA uses h different, learned linear projections

WQ,WK ,W V to map the inputs to different heads, and then perform the Att operation

in parallel. The outputs from all heads are concatenated and projected with WO. As
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in [61], the Att operation is implemented scaled dot-product attention is used:

Att(Q,K, V ) = softmax(
QKT

√
datt

)V, (2.13)

where datt is the attention dimension.

Position-wise feed-forward network (FFN) layer. The FFN layer is defined as:

FFN(x) = max(0,xW1 + b1)W2 + b2, (2.14)

which is independently applied at each time step (position) with different parameters

from layer to layer.

Layer normalization and residual connection. Around either of the above-

mentioned sublayers, a residual connection followed by layer normalization [66] is em-

ployed. For input X of a sublayer, the output is given as:

LayerNorm(X + Sublayer(X)). (2.15)

Due to the residual connections, all sublayers have the same output dimension dmodel.

Scaled positional encoding (SPE). In the original Transformer [61], since no recur-

rent relation is employed in the Transformer, to let the model be aware of information

about the relative or absolute position of each element, the triangular (sinusoidal) po-

sitional encoding (PE) [67] is added to the inputs to the encoder and decoder. In this

work, we adopt the SPE [68], which is a generalized version of the original PE that

scales the encodings with a trainable weight α, so that they can adaptively fit the scales

of the encoder and the decoder:

SPE(t) =


α · sin( t

10000
2t

dmodel

), if t is even,

α · cos( t

10000
2t

dmodel

), if t is odd.

(2.16)

The encoder we adopt in this work resembles the one in [69]. First, the input acoustic

feature sequence is downsampled in the time and frequency axes by a fraction of 4
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using two convolutional layers with stride 2 × 2. While the reduction of the memory

footprint is a clear benefit, a hidden representation with a low sampling rate can not

only speed up attention learning convergence due to easier attention calculation at each

decoding step but also approximates phoneme-level or even character-level linguistic

contents [40]. After linearly projecting to dmodel-dimensions and adding the SPE, L

identical encoder layers are stacked to form the core of the encoder. Each encoder layer

consists of an MHA sublayer and an FFN sublayer, followed by a residual connection

and layer normalization. The MHA layers in the encoder are self-attention layers since

the queries, keys, and values are all from the output from the previous layer.

The decoder in this work is composed of the same number of L identical decoder

layers as in the encoder. In each decoder layer, the first sublayer is the so-called

masked self-attention MHA sublayer, where a mask is utilized such that at time step

t, only vectors with time index up to and including t can be accessed. This preserves

the autoregressive property of the model. Then, an MHA sublayer uses the outputs

from the previous layer as queries and H as the keys and values, which ensembles the

encoder—decoder attention in 2.2. Finally, an FFN sublayer is used, as in the encoder.

Again, all sublayers are wrapped with a residual connection and layer normalization.

In addition to the L1, L2, and weighted binary cross-entropy losses, the guided

attention loss is also applied. As pointed out in [68], in Transformer-based speech

synthesis, not all attention heads demonstrate diagonal alignments, so following [70,71],

the guided attention loss is applied to partial heads in partial decoder layers.





3 Cascading ASR and TTS:

Baseline System for the Voice

Conversion Challenge 2020

3.1 Introduction

The aim of the voice conversion challenge (VCC)1 is to better understand different

VC techniques built on a freely-available common dataset to look at a common goal

and to share views about unsolved problems and challenges faced by current VC tech-

niques. The challenges focused on speaker conversion, where VC models are built to

automatically transform the voice identity. In the third version, VCC2020 [44], two

new tasks are considered. The first task is semiparallel VC within the same language,

where only a small subset of the training set is parallel with the rest being nonparallel.

The second task is cross-lingual VC, where the training set of the source speaker is

different from that uttered by the target speaker in language and content, thus non-

parallel in nature. In conversion, the source speaker’s voice in the source language is

converted as if it was uttered by the target speaker while keeping linguistic contents

unchanged.

It would be worth discussing two important factors when designing a VC system:

data and model. First, from the data point of view, in either of the VCC2020 tasks,

1http://www.vc-challenge.org/
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techniques for dealing with nonparallel data need to be developed. In the literature, a

promising paradigm for nonparallel VC is through a recognition-synthesis framework.

The idea is to first extract from the source speech the linguistic contents, followed

by blending with the target speaker characteristics to generate the converted speech.

Methods implementing this framework can be divided according to the type of linguistic

representation. The first type encodes representations with an ASR model, where a

popular choice is the phonetic posteriorgram (PPG) [55,72]. A synthesis model is then

trained to generate the voice of the target speaker. The second type usually employs an

autoencoder-like model that estimates the recognizer and synthesizer simultaneously

by implicitly factorizing the linguistic and speaker representations [73–77].

From the model point of view, we have witnessed how seq2seq models [36] change

the game in many research fields in only half a decade, and speech processing is no

exception. Its application in VC is especially attractive since that compared to conven-

tional frame-based methods that perform conversion frame-by-frame, seq2seq models

can implicitly learn the complex alignment and relationship between the source and

target sequences to generate outputs of various lengths. It is therefore a natural choice

to convert prosody including the speaking rate and F0 contour, which is closely re-

lated to speaker characteristics. As a result, seq2seq based VC has been a promising

approach in terms of conversion similarity [39–41,58].

In this paper, we describe the seq2seq baseline system for the VCC2020. Our sys-

tem is a cascade of seq2seq-based ASR and TTS models, which we will refer to as

ASR+TTS. A suitable baseline system should meet the following requirements:

• The system should be a simple and easy-to-use starting ground for newcomers to

base their work on.

• The system should be an open-source project made publicly available to benefit
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Figure 3.1: The training and conversion processes of the ASR+TTS method.

potential future researchers.

• The system should serve as a competitive benchmark.

With these goals in mind, we implemented the system using ESPnet, a well-developed

open-source end-to-end (E2E) speech processing toolkit [71, 78], and made as much

use of publicly available datasets as possible. Although it is generally believed that

simply cascading systems to perform a certain task is inferior to an end-to-end model,

benefitting from recent advances in ASR and TTS, as well as efforts such as implemen-

tation and hyperparameter tuning which are dedicated by the open-source community,

we will show that our system is not only easy to use but serves as a strong competing
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system in the VCC2020.

3.2 System Overview

A naive approach for VC is a cascade of an ASR model and a TTS model. Although

this method is not new, by revisiting this method using seq2seq models, we can model

the prosody such as pitch, duration, and speaking rate, which is usually not well

considered in the literature. Conceptually speaking, the ASR model acts like a speaker

normalizer that first normalizes the input speech such that attributes of the source

speaker are filtered out and only the linguistic content remains. Then, the TTS model

functions to add speaker information to the recognition result so that the converted

speech sounds like the target speaker.

Our system, as depicted in Figure 3.1, consists of three modules: a speaker-independent

ASR model, a separate speaker-dependent TTS model for each target speaker, and a

neural vocoder that synthesizes the final speech waveform.

ASR model. ASR models are usually trained with a multi-speaker dataset, thus

speaker-independent in nature. For both tasks 1 and 2, the source speech is always

English, so an English transcription is first obtained using the ASR model.

TTS model. In the TTS literature, it is a common practice to train in a speaker-

dependent manner rather than training speaker-independently since the former usually

outperform the latter. However, the size of the training set of each target speaker

in VCC2020 is too limited for seq2seq TTS learning. In light of this, we employ a

pretraining-finetuning scheme that first pretrains on large TTS datasets followed by

fine-tuning on the limited target speaker dataset [79] . This allows us to successfully

train on even approximately 5 minutes of data.

Neural vocoder. In recent years, neural waveform generation modules (also known as
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vocoders) have brought significant improvement to VC. In this work, we use the Parallel

WaveGAN (PWG) [80], since it enables high-quality, real-time waveform generation.

An open-source implementation2 is adopted and we integrated it with ESPnet.

Our implementation was built upon the E2E speech processing toolkit ESPnet

[71, 78], which provides various useful utility functions and properly tuned pretrained

models.

3.3 ASR Implementation

3.3.1 Data

Since the input is always English, we used the Librispeech dataset [81], which con-

tained 960 hours of English speech data from over 2000 speakers.

3.3.2 Model

The backbone of the ASR model was the Transformer [61, 69, 82]. The model was

trained in an end-to-end fashion using a hybrid CTC/attention loss [83], and a recurrent

neural network based language model (RNNLM) was used for decoding. We directly

used a pretrained model (including the RNNLM) provided by ESPnet.

3.4 TTS Implementation

We are faced with a harder challenge in implementing the TTS model. In task 2,

the input language is different from the languages of the training data. In other words,

2https://github.com/kan-bayashi/ParallelWaveGAN
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Table 3.1: The TTS training datasets in task 2. ”phn” and ”char” stand for phoneme

and character, respectively.

Lang. Dataset Spkrs Hours Input

Eng. M-AILABS [84] 2 32 phn or char

Ger. M-AILABS [84] 5 190 char

Fin. CSS10 [85] 1 10 char

Man. CSMSC [86] 1 12 pinyin

Figure 3.2: Illustration of the bilingual TTS used in task 2.

the TTS model needs to lean the voice of an unseen language. This is sometimes

referred to as cross-lingual voice cloning [87, 88]. As there has not been a standard,

promising protocol especially when only five minutes of training data is available, we

adopt a simple method that constructs x-vector [89] based, bilingual TTS models by

pretraining with corpora of English and the target language and finetuning with the

target language.



3.4. TTS Implementation 27

3.4.1 Data

The target language for task 1 is English, so for pretraining, we used the multi-

speaker LibriTTS [90] dataset, which contained around 250 hours of English data

from over 2000 speakers. In task 2, the target languages are German, Finnish, and

Mandarin. Considering the open-source ability, we wish to avoid using commercial or

private datasets. Unfortunately, under such constraint, there is not much choice, and

the available datasets at the time we developed the system were large but contained

only data from a single speaker or a few speakers, as shown in Table 3.1. Although it has

been shown that combining imbalanced multi-speaker datasets improves performance

[91], this effect remains unknown in the cross-lingual setting. To this end, for the

English data, we decided to use not the LibriTTS dataset which has many speakers

yet a small amount of data per speaker, but the M-AILABS dataset [84], which has

a large amount of data from a few speakers only. Finally, since the task 2 datasets

were of different sampling rates, we doswnsampled all task 2 data to 16 kHz. As for

the x-vector extractor, the Kaldi toolkit was used and the model was pretrained on

VoxCeleb [92].

3.4.2 Model

We used an x-vector [89] based multi-speaker TTS model [93] with a Transformer

backbone [68]. The input was a linguistic representation sequence, and the output was

the mel filterbank sequence extracted from the (optionally downsampled) waveform.

In task 1, since the input is always English, the model simply takes English characters

an input.

However, in task 2, it is nontrivial to decide the input representation since it is of-
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ten language-dependent. For example, there is no overlap in the text representation

between Mandarin and English [87]. When we finetune a pretrained model for a Man-

darin speaker, since the Mandarin corpus does not contain English words, the model

has no clue how the target speaker pronounce English words. This mismatch may

cause quality degradation. Below, we describe how we alleviate this issue.

We used a shared input embedding space when training the bilingual TTS model.

In neural TTS, the input embedding look-up table is a projection from discrete input

symbols to continuous representation and is trained with the rest of the model by

backpropagation. It is useful in that the model can implicitly learn how to pronounce

each input token, such that different tokens with a similar pronunciation can have a

similar embedding. The assumption here is that there is an overlap between the input

representations of the two languages. For example, if we train a Mandarin/English TTS

model, the ”ah” phoneme in English and ”a” pinyin representation may have similar

embeddings. As a result, even if only ”a” is seen during training, by learning how the

target speaker pronounces such vowel, the model may still know how to pronounce

”ah”.

For the Mandarin/English TTS, we used phonemes and pinyin as input, while for

the Finnish/English and German/English TTS, we used characters as input. In the

finetuning stage, the parameters are updated using the training utterances of the target

speaker, except that the embedding lookup table in Figure 3.2 is fixed.

3.5 Neural Vocoder Implementation

The PWG had a non-autoregressive (non-AR) WaveNet-like architecture and was

trained by jointly optimizing a multi-resolution spectrogram loss and a waveform ad-

versarial loss [80]. The input was mel filterbank and the output was raw waveform.
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For each task, we trained a separate PWG using the training data from all available

speakers. In other words, data of 8 and 10 speakers were used to train PWGs for tasks

1 and 2, respectively. Notably, in task 2, although the mel filterbanks were extracted

from 16kHz waveform as mentioned in Sections 3.4.1 and 3.4.2, we still map them to

24kHz waveform in training, as the quality degradation from such mismatch has shown

to be acceptable [90]. Although the finetuning technique of neural vocoders has been

proven to be useful in VC [34, 72], techniques for fine-tuning non-AR vocoders have

not been well investigated, so we leave this for future work.

3.6 Challenge Results

3.6.1 VCC2020 Dataset

The VCC2020 database had two male and two female English speakers as the source

speakers. For task 1, two male and two female English speakers were chosen as the tar-

get speakers, and one male and one female for each of Finnish, German, and Mandarin

in task 2. Each of the source and target speakers has a training set of 70 sentences,

which is around 5 minutes of speech data. Note that in task 1, the target and source

speakers have 20 parallel sentences, where the rest 50 sentences are different. The test

sentences for evaluation are shared for tasks 1 and 2 with a number of 25.

3.6.2 Evaluation protocol

The VCC2020 organizing committee conducted a large-scale subjective test on all

submitted systems for both tasks 1 and 2. The evaluations included naturalness and

similarity tests. In the naturalness test, a five-point mean opinion score (MOS) test
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T2
2

Figure 3.3: Naturalness results for task 1.

was adopted, where listeners were asked to rate the naturalness of each speech clip

from 1 to 5. In the similarity test, listeners were presented with a converted and a

ground truth target utterance, and they were asked to decide whether or not the two

utterances were spoken by the same person on a four-point scale3.

3.6.3 Task 1 Results

Figures 3.3 and 3.4 show the overall results for task 1. For naturalness, our system

received a MOS score of about 3.5, which ranks 11 out of all the 31 submitted systems

in task 1. This shows that, as many systems are specifically designed for VC, sim-

3Although the official report contained results from Japanese and English listeners, here we only

report results of English listeners since the two listener groups share a similar tendency.
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Figure 3.4: Similarity results for task 1.

ply combining state-of-the-art ASR and TTS systems can already achieve competitive

results, thanks to the well-developed technologies in the two research fields. The per-

formance gap between our system and the superior teams may come from the difficulty

of finetuning the TTS model with only 70 utterances. As for similarity, our system

had a similarity score around 90%, which means that about 90% of the converted ut-

terances were considered spoken by the same target speaker by the participants. This

made our system rank second among all teams, which serves as strong evidence of the

superiority of seq2seq models when it comes to converting speaker identity.



32 3 Cascading ASR and TTS: Baseline System for the Voice Conversion Challenge 2020

T2
2

Figure 3.5: Naturalness results for task 2.

3.6.4 Task 2 Results

Figures 3.5 and 3.6 show the overall results for task 2. For naturalness, our system

had a MOS score of about 2.0, ranking 21 out of all the 28 submitted systems in task

2, which is a lot worse than the performance in task 1. On the other hand, our system

ranked 9 among the 28 teams in the similarity test. Looking at these two results, it can

be inferred that our system can still well capture the speaker characteristics thanks to

the power of seq2seq modeling, but suffer from a severe quality degradation. This is

possibly owing to the limited training data and the lack of pretraining data, as well as

the difficulty of handling the cross-lingual data using the overly-simple TTS model we

implemented.
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Figure 3.6: Similarity results for task 2.

3.7 Analysis on Linguistic Contents

A potential threat of the cascading paradigm is that error in early stages might

propagate to downstream models. In our proposed method, the recognition failure in

the first ASR stage might harm the linguistic consistency in VC. We examine this phe-

nomena by measuring the intelligibility with an off-the-shelf Transformer-ASR model

trained on LibriSpeech, which is provided in ESPnet.

Table 3.2 shows the ASR results. First, the error rates on the input source speech

were not severe as they are similar to that on the test set of LibriSpeech. However,

the scores of the converted speech are much worse, indicating that the imperfect TTS

modeling is the main cause of intelligibility degradation. We also observe that the error

rates of task 2 are much higher than that of task 1, which is consistent with the results



34 3 Cascading ASR and TTS: Baseline System for the Voice Conversion Challenge 2020

Table 3.2: Character/word error rates (CER/WER) (%) calculated using a pretrained

ASR model. The scores are averaged over all target speakers. Note that these results

are not from the official objective evaluation.

Input Task 1 Task 2

Source CER WER CER WER CER WER

SEF1 2.9 6.5 12.1 22.1 19.9 34.3

SEF2 1.4 3.7 12.6 22.7 21.4 36.2

SEM1 0.2 0.9 14.2 20.1 20.3 36.8

SEM2 2.9 7.5 18.5 30.9 22.7 38.0

in Section 3.6.4.

3.8 Conclusion and Discussion

This paper described the seq2seq baseline system of the VCC2020, including the

intuition, system design, training datasets, and results. Built upon the E2E, seq2seq

framework, ourASR+TTS baseline served as a simple starting point and a benchmark

for participants. Subjective evaluation results released by the organizing committee

showed that our system is a strong baseline in terms of conversion similarity, confirming

the effectiveness of seq2seq modeling. The results also demonstrate the naive yet

promising power of combining state-of-the-art ASR and TTS models. Yet, there is

still much room for improvement, and below we discuss several possible directions that

might be addressed in an advanced version.

Enhance the pretraining data. As stated in Section 3.4.1, there was not much
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choice for pretraining data in task 2 under the open-source constraint. Using a multi-

speaker pretraining dataset as in task 1 might improve the performance. Also, using

datasets with a higher sampling rate can also improve the quality of the vocoder.

Utilize linguistic knowledge. One principal of E2E learning to use as less domain-

specific knowledge as possible, That is to say, the system performance is expected to

be improved when such knowledge is utilized. For example, as reported in [87], using

phoneme inputs can greatly improve multi-lingual TTS systems, but we could not do so

in task 2 due to the unfamiliarity with target languages such as Finnish and German.

Select an advanced multi-speaker TTS model. The multi-speaker TTS model

[93] we adopted was a rather naive one, and a more state-of-the-art model like [94]

might improve the performance.

Improve the neural vocoder. We adopted a non-AR neural vocoder for fast gener-

ation, but it is generally believed that AR ones are still superior. As this is a popular

research field, it is expected that real-time neural vocoders maintaining the output

quality will soon be developed. Also, finetuning the vocoders can further improve the

performance, as stated in Section 3.5.





4 Pretraining for Parallel,

One-to-one Sequence-to-sequence

Voice Conversion

4.1 Introduction

Different from the cascade system discussed in chapter 3 where the ASR and TTS

models are optimzied separately, in this chapter, we focus on optimizing one seq2seq

model in a parallel, one-to-one setting. That is to say, we assume that the source

speaker and the target speaker during the training and conversion phases are identical,

and we have access to a parallel corpus which contains pairs of utterances of the

same linguistic contents from the source and the target speakers. To tackle the data

defeciency problem, we propose a pretraining strategy utilizing ASR and TTS.

Model pretraining, as one popular realization of transfer learning, has been regain-

ing attention in recent years. This concept is usually realized by learning universal,

high-level feature representations. In the field of computer vision, supervised pre-

training (e.g. ImageNet classification [95–97]) followed by fine-tuning on tasks with

less training data (e.g. object detection [98–100], segmentation [101, 102] and style

transfer [103, 104]) often leads to state-of-the-art results. On the other hand, many

natural language understanding (NLU) tasks learn rich representation through an self-

supervised language model objective [105–109], which have also been shown to boost
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performance.

In speech processing, early applications of pretraining deep neural networks mainly

lied in ASR, with the main goal of speeding up optimization and reducing generalization

error [110,111]. In recent years, inspired by the breakthrough in NLU, unsupervised or

self-supervised speech representation learning utilizing massive, untranscribed speech

data has become a popular research topic. As language modeling objectives have

been widely employed for pretraining in NLU, finding a universally effective objective

is still an active research area. Various objectives have been proposed, such as au-

toencoding [112–114] sometimes with an autoregressive model [115,116] or contrastive

learning [117–120]. Nonetheless, different pretraining objectives lead to different rep-

resentations, and an effective objective for VC is still unclear.

We propose a novel yet simple pretraining technique to transfer knowledge from two

speech processing tasks, namely TTS and ASR. We refer to them as TTS-oriented

pretraining and ASR-oriented pretraining, respectively. In recent years, ASR and

TTS systems based on neural seq2seq models have enjoyed great success owing to

the vast large-scale corpus contributed by the community. We argue that lying at the

core of these models is the ability to generate effective intermediate representations,

which facilitates correct attention learning that bridges the encoder and the decoder.

Nonetheless, we choose these two tasks not only because they are two of the most

active research fields in speech processing, but because these two tasks, by definition,

are suitable sources of transfer for VC.

We first provide a unified, intuitive explanation from an information perspective, as

depicted in Figure 4.1. Roughly speaking, speech consists of the linguistic contents

and the speaker identity. The goal of VC is to remove the source speaker information

from the source speech, and then inject the identity of the target speaker. Thus, a
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Figure 4.1: Illustration of the relationship of VC, TTS and ASR in an information

perspective.

speaker-free intermediate feature space would be essential for a successful VC model,

which is hard to facilitate given only a parallel corpus. On the other hand, TTS and

ASR both aim to find a mapping between text and speech, as the former tries to

add speaker information to the source while the latter tries to remove. We therefore

suspect that the intermediate hidden representation spaces of these two tasks contain

somewhat little speaker information, and serve as a suitable fit for VC.

Our method enjoys several advantages. First, our method relies on supervised pre-

training with well-defined speech processing objectives. As we adopt popular speech

processing tasks, large scale datasets can be assumed easily accessible thanks to the

vastly growing community. Also, our method is flexible in that it needs neither text
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label of the VC data nor carefully designed regularization methods, yet can still achieve

great data efficiency. Finally, it is expected that performance of pretraining would ben-

efit from the rapid development of state-of-the-art models, thus improving the quality

of the downstream VC task.

Our contributions are as follows:

• We propose TTS-oriented and ASR-oriented pretraining for seq2seq VC.

• We examine, through systematical objective and subjective evaluations, the TTS

and ASR tasks for pretraining in seq2seq VC. Results show that they are both

effective with sufficient data while only TTS pretraining maintains robust against

the reduction of data.

• We visualize the hidden representation spaces of the learned models using differ-

ent pretraining tasks and how they relate to the performance.

• We compare two different model architectures for seq2seq VC: recurrent neural

networks (RNNs) and Transformers, and we show the supremacy of the latter

over the former, which is consistent with the finding in most speech processing

tasks [70].

4.2 Method

In seq2seq models for speech applications, effective intermediate representations can

facilitate correct attention learning that bridges the encoder and the decoder, thus

crucial to success. By the definition of VC, it is natural to try to encode the linguistic

contents of the source speech into the hidden representations so that they can be

maintained. Thus, we conjecture that the core ability of successful seq2seq VC models
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Figure 4.2: Illustration of the concept of pretraining from seq2seq TTS or ASR to

seq2seq VC.

is to generate and utilize high-fidelity hidden representations.

In theory, both TTS and ASR tasks aim to find a mapping between two modalities:

speech and text. As speech signals contain all essential linguistic information, the

hidden representation spaces induced by these two tasks should lie in the middle of the

spectrum between speech and text. Thus, we conjecture that such space is desirable

for seq2seq VC models, thus suitable for pretraining.

In this work, we extend the TTS-oriented pretraining technique previously proposed

in [41] to both TTS and ASR, as depicted Figure 4.2. Specifically, a two-stage training

procedure is employed: in the first pretraining stage, a large-scale corpus is used to

learn the initial seq2seq model parameters as a prior; then, in the second stage, the

seq2seq VC model is initialized with the pretrained model parameters and trained with

a relatively smaller VC dataset. The goal of this pretraining procedure is to provide

fast, sample-efficient VC model learning, thus reducing the data size requirement and
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Figure 4.3: Diagram of the pretraining procedures for TTS and ASR. Top left: TTS-

oriented pretraining. Top right: ASR-oriented pretraining. Bottom: VC model train-

ing.

training time. In addition, this setup is highly flexible in that we do not require any of

the speakers to be the same, nor any of the sentences between the pretraining corpus

and the VC dataset to be parallel.

Let the parallel VC dataset beDVC = {Ssrc,Strg}, where Ssrc,Strg denote the source,

target speech, respectively. Our goal is to find a set of prior model parameters to train

the final encoder EncSVC and decoder DecSVC.

4.2.1 TTS-oriented pretraining

In this subsection we review the TTS-oriented pretraining technique [41]. We assume

that access to a large single-speaker TTS corpus DTTS = {TTTS,STTS} is available,

where TTTS,STTS denote the text and speech of the TTS speaker respectively. The

pretraining can be broken down into two steps.

A.1 Decoder pretraining : As in A.1 in Figure 4.3, the decoder is pretrained, on DTTS,

by training a conventional TTS model composed of a text encoder EncTTTS and a
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speech decoder DecSTTS.

A.2 Encoder pretraining : Then, as in A.2 in Figure 4.3, the encoder is pretrained,

also on the same DTTS, by training an autoencoder which takes STTS as input

and output. The decoder here is the pretrained DecSTTS and we fix the parameters

so that they are not updated during training. The desired pretrained encoder

EncSTTS can then be obtained by minimizing the reconstruction loss.

The intuition of the encoder pretraining is to obtain an encoder capable of encoding

acoustic features into hidden representations that are recognizable by the well pre-

trained decoder. Another interpretation is that the final pretrained encoder EncSTTS

tries to mimic the text encoder EncTTTS. In the first decoder pretraining step, since

text itself contains pure linguistic information, the text encoder EncTTTS is ensured

to learn to encode an effective hidden representation that can be consumed by the

decoder DecSTTS. Fixing the decoder in the encoder pretraining process, as a conse-

quence, guarantees the encoder to behave similarly to the text encoder, which is to

extract fine-grained, linguistic-information-rich representations.

4.2.2 ASR-oriented pretraining

In this subsection we describe how to extend the TTS-oriented pretraining tech-

nique in 4.2.1 to ASR. We assume that a large multi-speaker ASR corpus DASR =

{SASR,TASR} is available, where SASR,TASR denote the speech and text data in DASR,

respectively. Similar to TTS-oriented pretraining, the ASR-oriented pretraining is

again broken down into two steps.

B.1 Encoder pretraining : First, the encoder is pretrained, on DASR, by training a

conventional ASR model consisting a speech encoder EncSASR and a text decoder
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DecTASR, as in B.1 in Figure 4.3.

B.2 Decoder pretraining : Differently, the decoder pretraining is performed on DTTS,

rather on DASR. This is because DASR is a multi-speaker corpus, but the VC

model architecture in this work focuses on one-to-one VC, i.e. modeling the

conversion between one source speaker and one target speaker, thus cannot model

individual speaker characteristics. Again, the decoder pretraining uses STTS as

input and output, and the encoder is the pretrained EncSASR and kept fixed during

training. To speed up convergence, we initialize the decoder with the one obtained

in TTS decoder pretraining, namely DecSTTS. The desired pretrained decoder

EncSASR can then be obtained by minimizing the reconstruction loss. The decoder

pretraining procedure is depicted in B.2 in Figure 4.3.

The intuition of the ASR decoder pretraining is different from that of the TTS

encoder pretraining. The ASR speech encoder EncSASR, trained with the ASR objective,

should generate a compact hidden representation for decoding underlying linguistic

contents. Such representations are believed to be easier to map to speech, thus suitable

for pretraining the speech decoder DecSASR.

4.2.3 VC model training

Finally, as in [41], DVC is used to train the desired VC models EncSVC and DecSVC,

with the encoder initialized with either EncSTTS or Enc
S
ASR, and the decoder with DecSTTS

or DecSASR, respectively. As we will show later, the pretrained model parameters serve

as a very good prior to adapt to the relatively scarce VC data, achieving significantly

better conversion performance.
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4.3 Experimental evaluations

4.3.1 Experimental settings

Data

ForDVC, we conducted our experiments on the CMU ARCTIC database [121], which

contains parallel recordings of professional US English speakers sampled at 16 kHz.

Data from four speakers were used: a male source speaker (bdl) and a female source

speaker (clb), as well as a male target speaker (rms) and a female target speaker (slt).

100 utterances were selected for each validation and evaluation sets, and the remaining

932 utterances were used as training data. For DTTS, we chose a US female English

speaker (judy bieber) from the M-AILABS speech dataset [84]. With the sampling rate

also at 16 kHz, the training set contained 15,200 utterances, which were roughly 32

hours long. For DASR, we used the LibriSpeech dataset [81] and pooled train-clean-100

and train-clean-360 together to get 460 hours of data from roughly 1170 speakers.

Implementation

The entire experiment was carried out on the open-source ESPnet toolkit [71, 78],

including feature extraction, training and benchmarking. The official implementation

has been made publicly available1, and since readers may access all the settings and

configurations online, we omit the detailed hyperparameters here. For the VC training,

80-dimensional mel filterbanks with 1024 FFT points and a 256 point frame shift was

used as the acoustic features. We used the LAMB optimizer [122] and set the learning

rate to 0.001.

1https://github.com/espnet/espnet/tree/master/egs/arctic/vc1
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Waveform synthesis module

We used the Parallel WaveGAN (PWG) [80], which is a non-autoregressive variant

of the WaveNet vocoder [27, 28] and enables parallel, faster than real-time waveform

generation2. Since speaker-dependent neural vocoders outperform speaker-independent

ones [29], we trained a speaker-dependent PWG conditioned on natural mel spectro-

grams, one for each target speaker. Note that we used the full training dataset, since

the goal is to demonstrate the effects of various methods, so we did not train separate

PWGs w.r.t. different training data sizes.

Objective evaluation metrics

We carried out three types of objective evaluations between the converted speech

and the ground truth.

• Mel cepstrum distortion (MCD) [123]: The MCD is a commonly used measure

of spectral distortion in VC, which is based on mel-cepstral coefficients (MCCs).

It is defined as:

MCD[dB] =
10

log 10

√√√√2
K∑
d=1

(mcc
(c)
d −mcc

(t)
d )2, (4.1)

where K is the dimension of the MCCs and mcc
(c)
d and mcc

(t)
d represent the d-th

dimensional coefficient of the converted MCCs and the target MCCs, respectively.

In practice, MCD is calculate in a utterance-wise manner. A dynamic time warp-

ing (DTW) based alignment is performed to find the corresponding frame pairs

between the non-silent converted and target MCC sequences beforehand. We

2We followed the open-source implementation at https://github.com/kan-bayashi/

ParallelWaveGAN
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used the WORLD vocoder [12] for MCC extraction and silence frame decisions,

and set K = 24.

• F0 root mean square error (F0RMSE): Since using seq2seq modeling in VC can

greatly improve prosody conversion, we report the RMSE between the F0 of con-

verted speech and that of the reference target speech. Similar to the calculation

of MCD, DTW-based is performed and we take only the non-silent frames into

account.

• Character/word error rate (CER/WER): The CER/WER is an underestimate

of the intelligibility of the converted speech. The ASR engine is based on the

Transformer architecture [69] and is trained using the LibriSpeech dataset [81].

The CER and WER for the ground-truth validation set were 0.9% and 3.8%,

respectively, which could be regarded as the upper bound.

Note that to avoid overfitting, we used the validation set MCD as the criterion for model

selection, and the best performing models were proceeded to generate the samples for

the subjective test.

Subjective evaluation methods

The following subjective evaluations were performed using the open-source toolkit

[124] which implements the ITU-T Recommendation P.808 [125] for subjective speech

quality assessment in the crowd using the Amazon Mechanical Turk (Mturk), and

screens the obtained data for unreliable ratings. We recruited more than fifty listeners.3

• The mean opinion score (MOS) test on naturalness: Subjects were asked to

3A demo web page with samples used for subjective evaluation is available at https://unilight.

github.io/Publication-Demos/publications/vtn-taslp/index.html
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evaluate the naturalness of the converted and natural speech samples on a scale

from 1 (completely unnatural) to 5 (completely natural).

• The VCC [43] style test on similarity: This paradigm was adopted by the VCC

organizing committee. Listeners were given a pair of speech utterances consisting

of a natural speech sample from a target speaker and a converted speech sample.

Then, they were asked to determine whether the pair of utterances can be pro-

duced by the same speaker, with 4-level confidence of their decision, i.e., sure or

not sure.

4.3.2 Effectiveness of TTS-oriented pretraining on RNN and

Transformer based models

First, we show that TTS-oriented pretraining is a technique effective on not only

VTN but also RNN-based seq2seq VC models. The objective results are in Table 4.1.

First, without pretraining, both VTN and RNN could not stay robust against the

reduction of training data. The performance dropped dramatically with the reduction

of training data, where a similar trend was also reported in [58]. This identifies the

data efficiency problem of seq2seq VC. By incorporating TTS-oriented pretraining,

both VTN and RNN exhibited a significant improvement in all objective measures,

where the effectiveness was robust against the reduction in the size of training data.

With only 80 utterances, both models can achieve comparable performance to that

of using the full training dataset except the F0RMSE, wherein the case of VTN, the

intelligibility is even better.

The subjective results are in Table 4.2. Without pretraining, the VTN and RNN

suffered from about 1.2 and 0.8 MOS points drop when the training data reduces from
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932 to 80 utterances. On the other hand, with TTS-oriented pretraining applied, the

naturalness of VTN and RNN improved by more than 1 point with 932 utterances and

more than 2 points with 80 utterances. Moreover, when the training data reduces, there

was only a very limited performance drop. These results demonstrate the effectiveness

of the TTS-oriented pretraining technique.

4.3.3 Comparison of TTS-oriented and ASR-oriented pretrain-

ing

Next, we compare the effectiveness of TTS-oriented and ASR-oriented pretraining.

From Tables 4.1 and 4.2, with the full training set, ASR-oriented pretraining could

bring almost the same amount of improvement compared to TTS-oriented pretraining.

However, as the size of training data reduces, the performance of the ASR-oriented

pretrained model dropped significantly, except F0RMSE. This shows that ASR-oriented

pretraining lacks the robustness essential for practical VC.

To investigate the failure of ASR-oriented pretrained models against limited train-

ing data, we chose one sentence from the evaluation set and show the ASR results

of the converted samples using TTS-oriented and ASR-oriented pretrained VTNs in

Table 4.3. Although TTS-oriented pretraining could not ensure complete linguistic

consistency, the errors were minor and possibly due to the imperfect ASR engine used

for evaluation, thus the result seems reasonable. On the other hand, the recognition

result of the ASR-oriented pretrained model with 80 utterances that had no connection

to the source sentence. We conclude that linguistic consistency is poorly maintained

under the limited data scenario using ASR-oriented pretraining.
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4.3.4 Comparison of RNN and Transformer based models

In [41], the VTN was shown to outperform the RNN-based model [39], while it

was not clear whether the improvement came from different model architectures or

the pretraining technique. To make a clearer comparison, we applied TTS-oriented

pretraining to both VTNs and RNNs. From Tables 4.1 and 4.2, it was shown that

without TTS-oriented pretraining, VTNs were less robust to training data reduction

than RNNs in terms of objective measures but better in terms of subjective measures.

This is possibly because that a more complex model like VTN is capable of generating

better-sounding voices while being more prone to overfitting since it lacks attention

regularizations such as the location-sensitive location, as suggested in [71]. As we

applied TTS-oriented pretraining to both VTN and RNN, it could be clearly observed

that VTNs outperformed RNNs in terms of all objective measures except F0RMSE

and subjective scores. This is possibly due to the use of MCD as the model selection

criterion.

4.3.5 Visualizing the hidden representation space

In Section 4.2.1, we suspected that applying the TTS-oriented pretraining technique

results in an encoder that can extract linguistic-information-rich representation. To

demonstrate this tendency, we extracted the hidden representations with the trained

encoders using the validation set from the clb speaker as input, and visualized them

using the t-SNE method [126]. We used the phoneme labels that come with the CMU

ARCTIC dataset as ground truth and colored the 5 most common phonemes and their

corresponding hidden representations to simplify the plots. Note that for encoders with

a reduction factor greater than 1, the corresponding label was decided with majority
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voting. For example, if the encoder reduction factor is 4, and the labels of the four

frames that corresponds to a hidden representation are ”s”, ”s”, ”s”, ”a”, then the

label of that hidden representation will be set to ”s”.

The resulting plots are shown in Figure 4.4. It could be clearly observed that com-

pared to no pretraining, the hidden representation spaces learned from TTS-oriented

pretraining demonstrated a strong degree of clustering effect, where points correspond

to the same phoneme were close to each other. This tendency was consistent in the

cases of both 932 and 80 training utterances. On the other hand, ASR-oriented pre-

training yielded a much scatter hidden representation space even with 932 training

utterances.

This analysis suggests that the TTS-oriented pretraining technique can result in a

more discretized representation space, which matches our initial assumption. We may

further conclude that, by looking together with the objective and subjective results in

Tables 4.1 and 4.2, the degree of clustering effect somehow reflect the goodness of the

hidden representations for seq2seq VC.

4.4 Conclusions

In this work, we evaluated the pretraining techniques for addressing the problem of

data efficiency in seq2seq VC. Specifically, a unified, two-stage training strategy that

first pretrains the decoder and the encoder subsequently followed by initializing the

VC model with the pretrained model parameters was proposed. ASR and TTS were

chosen as source tasks to transfer knowledge from, and the RNN and VTN architec-

tures were implemented. Through objective and subjective evaluations, it was shown

that the TTS-oriented pretraining strategy can greatly improve the performance in

terms of speech intelligibility and quality when applied to both RNNs and VTNs, and
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the performance could stay without significant degradation even with limited training

data. As for ASR-oriented pretraining, the robustness was not so good with the reduc-

tion of training data size. Also, VTNs performed inferior to RNNs without pretraining

but superior with TTS-oriented pretraining. The visualization experiment suggested

that the TTS-oriented pretraining could learn a linguistic-information-rich hidden rep-

resentation space while the ASR-oriented pretraining lacks such ability, which lets us

imagine what an ideal hidden representation space would be like.

In the future, we plan to extend our pretraining technique to more flexible training

conditions, such as many-to-many [127] or nonparallel training [58].
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Table 4.1: Validation-set objective evaluation results of VTNs with no pretraining,

TTS-oriented pretraining, ASR-oriented pretraining, and RNN-based models with no

pretraining and TTS-oriented pretraining, which are trained on different conversion

pairs and different sizes of data. Bold font indicates the best performance across the

average scores.

Pair 932 training utterances 250 training utterances 80 training utterances

Model Pretrain Src Trg MCD F0RMSE CER WER MCD F0RMSE CER WER MCD F0RMSE CER WER

VTN

None

clb
slt 6.60 24.54 12.4 20.2 7.43 25.37 29.2 42.3 8.23 26.65 65.3 87.6

rms 6.83 24.02 21.4 33.0 7.83 24.86 53.2 73.3 8.68 27.20 71.8 94.8

bdl
slt 7.33 23.36 23.1 33.7 8.31 23.40 52.9 75.9 8.74 24.81 73.9 95.7

rms 7.37 22.68 28.4 43.3 8.30 23.78 56.2 78.4 9.14 24.38 79.0 102.8

Average 7.03 23.65 21.3 32.6 7.97 24.35 47.9 67.5 8.70 25.76 72.5 95.2

TTS

clb
slt 6.02 23.94 5.5 9.1 6.41 24.86 5.2 9.7 6.66 27.24 10.4 14.7

rms 6.22 24.29 6.8 11.9 6.75 24.91 12.8 21.3 6.94 27.86 12.5 22.0

bdl
slt 6.33 22.44 5.0 7.6 6.71 23.24 4.8 8.1 7.07 23.75 9.7 13.6

rms 6.69 22.63 7.3 12.7 7.13 23.32 11.3 18.0 7.39 24.13 17.2 26.2

Average 6.32 23.33 6.2 10.3 6.75 24.08 8.5 14.3 7.02 25.75 12.5 19.1

ASR

clb
slt 6.11 24.03 4.8 10.9 6.84 24.78 15.9 26.0 8.28 27.13 72.1 97.6

rms 6.22 24.15 8.1 16.0 7.08 24.89 27.2 43.2 7.93 26.57 60.2 86.2

bdl
slt 6.50 22.35 5.7 11.1 7.33 23.65 26.1 39.8 8.18 24.23 58.2 80.7

rms 6.68 22.46 9.1 15.6 7.58 23.24 32.9 51.6 8.22 24.25 59.7 82.9

Average 6.38 23.25 6.9 13.4 7.21 24.14 25.5 40.2 8.15 25.55 62.6 86.9

RNN

None

clb
slt 6.77 24.81 7.1 12.1 7.29 25.02 15.4 24.0 7.76 25.04 38.6 56.8

rms 6.80 23.54 11.6 19.7 7.49 24.84 24.7 38.0 7.98 27.67 48.9 68.7

bdl
slt 7.45 23.37 23.4 32.6 8.06 24.53 37.1 54.4 8.44 24.40 65.6 93.8

rms 7.62 23.96 20.0 32.4 8.25 24.32 47.2 90.2 8.52 25.13 59.7 81.5

Average 7.16 23.92 15.5 24.2 7.77 24.68 31.1 51.7 8.18 25.56 53.2 75.2

TTS

clb
slt 6.29 24.62 5.6 10.1 6.63 23.99 7.4 12.7 6.92 26.40 14.0 22.2

rms 6.35 23.58 8.3 16.1 6.88 24.30 17.0 27.7 7.08 26.54 29.0 44.0

bdl
slt 6.74 22.89 8.2 13.9 7.08 23.11 11.3 19.8 7.46 23.60 16.3 23.8

rms 6.97 22.36 15.1 26.3 7.39 23.34 21.1 32.4 7.57 23.30 25.4 39.6

Average 6.59 23.36 9.3 16.6 7.00 23.69 14.2 23.2 7.26 24.96 21.2 32.4
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Table 4.2: Evaluation-set naturalness and similarity subjective evaluation results of

VTNs with no pretraining, TTS pretraining, ASR pretraining, and RNN-based models

with no pretraining and TTS pretraining, which are averaged over all conversion pairs

and different sizes of data.

932 training utterances 80 training utterances

Model Pretraining Naturalness Similarity Naturalness Similarity

Analysis-synthesis 4.45 ± 0.14 - - -

VTN

None 3.19 ± 0.23 61% ± 14% 1.96 ± 0.16 44% ± 13%

TTS 4.34 ± 0.15 80% ± 11% 4.11 ± 0.09 68% ± 8%

ASR 4.25 ± 0.16 77% ± 10% 3.38 ± 0.20 53% ± 12%

RNN
None 2.33 ± 0.20 40% ± 12% 1.57 ± 0.14 33% ± 15%

TTS 3.91 ± 0.19 68% ± 13% 3.71 ± 0.09 58% ± 10%

Table 4.3: ASR-based recognition results of VTN converted samples from the

evaluation set of the clb-slt conversion pair. The errors are in uppercase.

Description Training data size Recognition result

Ground truth - the history of the eighteenth century is written ernest prompted

TTS-oriented pretraining

932 the history of the eighteenth century is written IN IS prompted TO TO

250 the history of the eighteenth century is written IN HIS PROMPTER

80 the history of the eighteenth century is written ON HIS PROMPT

ASR-oriented pretraining

932 the history of the eighteenth century is written EARNEST prompted

250 the history of the eighteenth CENTURY’S RADIANCE prompted

80 IT DISTURBED the DAY TO HIMSELF TO REJOIN HIM IN NORTH’S LIBRARY
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(a) No pretraining (932) (b) No pretraining (80)

(c) TTS pretraining (932) (d) TTS pretraining (80)

(e) ASR pretraining (932) (f) ASR pretraining (80)

Figure 4.4: Visualizations of hidden representations extracted from VTNs with no pre-

training, TTS-oriented pretraining, and ASR-oriented pretraining. The validation set

from clb was used. The numbers in the parenthesis indicate the number of training

utterances.





5 Conclusions

5.1 Summary of the Thesis

In this thesis, we studied the problem of VC, a technique that can transform the

characteristics of the source speech into that of the target speech such that the lin-

guistic contents are preserved. VC can be beneficial in various real-world scenarios,

including entertainment, education and medical applications. We focused on develop-

ing seq2seq VC models, which is superior to conventional frame-wise models in terms

of the modeling of prosody. To overcome the data deficiency problem, two transfer

learning approaches have been presented. It is believed that such techniques can make

seq2seq VC models more practical to use.

Chapter 2 described the seq2seq VC model architectures used in this thesis. We

first observed that TTS and VC share a common objective of synthesizing speech

waveform, and thus suggested a seq2seq VC model can be easily obtained by making

simple modifications to a TTS model. We then give a unified formulation of a seq2seq

model and some common components for the general speech synthesis task. Finaly,

we described two seq2seq VC models in detail, nemaly the RNN-based model and the

Transformer-based model.

In Chapter 3, a system that consists a cascade of two readily trained seq2seq ASR

and TTS model was presented. We argued that simply concatenating state-of-the-

art ASR and TTS models that are trained with large-scale datasets in the respective
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research fields can yield superior performance even with limited training data. The

proposed system was adopted to be the seq2seq baseline of the VCC2020, and through

the official listening test, it was shown that the system served as a competitive baseline

system, even ranking second in terms of speaker siilarity. This result demonstrated

the effectiveness of the proposed framework. In addition, the system has been made

publicly available for the participants, and will maintain open source to benefit future

potential interested researchers.

In Chapter 4, we focused on the optimization of one unified seq2seq VC model in

a parallel, one-to-one setting. By observing VC, TTS and ASR in an information

perspective, we proposed to transfer the most essential ability of a seq2seq model, i.e,

the extraction of meaningful hidden representations, from ASR and TTS. The proposed

two-step pretraining-finetuning scheme serves a prior for fast, sample-efficient seq2seq

VC model learning. Through objective and subjective evaluations, we demonstrated

that both ASR-oriented and TTS-oriented pretraining could improve the performance

with adequate data, but only TTS-oriented pretraining maintained robust with limited

data. We also showed the superiority of Transformer-based models over RNN-based

ones.

5.2 Future Work

The goal of developing transfer leaning techniques to mitigate the data deficiency

problem is to make seq2seq VC models more applicable to real-world scenarios. How-

ever, there are still a number of research questions that needs to be solved.



5.2. Future Work 59

5.2.1 Real-time, low-latency processing

Despite the promising accuracy, seq2seq VC models are computationally expensive

and memory consuming, thus needs optimization. In VC, the latency criterion for

production level VC is 50 ms, but in the current seq2seq VC, the latency is 600 ms.

This is due to the massive parameters of DNNs and the autoregressive decoding process

of seq2seq. In the fields of ASR and TTS, several techniques have been explored to

build seq2seq models in mobile devices [128,129]. To build VC devices for patients and

users, such investigation is necessary.

Specifically, to tackle these problems, general methods for compressing DNNs in-

cluding parameter quantization and weight pruning [130] and methods specialized for

seq2seq models such as streaming decoding with monotonic chunkwise attention [131]

can be applied. It is expected that by evaluating methods for compressing and ac-

celerating the seq2seq VC model, the computational and latency constraints can be

satisfied by applying valid techniques.

5.2.2 Augmented speech communication with multi-modal sig-

nals

In addition to using speech organs to produce speech, we seek an interactive speech

production paradigm by utilizing what we refer to as a multimodal signal, depicted

in Figure 5.1. Such signals can be collected from human body movements or devices

such as digital instruments, thus can be viewed as an extension of human intention.

By modeling the multimodal signals, we may more flexibly control various aspects of

speech, such as timbre, emotion, accent, etc. For instance, in addition to developing

speaking aid devices for patients with speech organ disabled, we may further integrate
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Figure 5.1: Augmented speech communication.

musical instruments [132,133] or visual sensors capturing the facial expression so that

users may produce speech with the intended emotion, making it possible for patients to

more efficiently convey non-linguistic information. In a nutshell, a paradigm shift that

relies on visual or behavior signals like signs and movements is believed to drastically

change the form of human-to-human communication beyond physical barriers.

Technically speaking, a new multi-modal dataset needs to be collected first. The

plan is to collect several datasets, including (1) the singing voices and the signals from

digital keyboard players, (2) emotional speech of voice actors with facial expression and

hand gestures signals. Once such a dataset is collected, the previously proposed seq2seq

VC model can be deployed to test the feasibility of using the multi-modal signal. As it

is impractical to collect a large amount of such data, the pretraining technique should

be essential to alleviate data scarcity. The ultimate goal is to combine the real-time,

low-latency techniques described in Subsection 5.2.1 to form a uniform system for the
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prototype demo. The datasets and the developed systems can be freely available for

further research purposes.
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