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Abstract

Voice conversion (VC) refers to the task of converting one type of speech to an-

other without changing the linguistic contents and has the potential to be employed in

medical, business, and entertainment applications. Most pioneering works in VC first

require the collection of a parallel dataset, which refers to a set of utterances from the

source and the target with the same contents. Then, a frame-based model is trained,

which tries to find a mapping for each source speech frame.

As VC techniques evolved, two mainstream approaches were developed to solve the

shortcomings of the above-mentioned method. The first type is sequence-to-sequence

(seq2seq) modeling, which is designed to tackle problems where the lengths of the

source and target sequences differ. When applied to VC, seq2seq models excel in

modeling prosody, which correlates to speaker identity performance. The second line

of work attempts to make use of non-parallel datasets. A representative approach is

the recognition-synthesis (rec-syn) framework, which decomposes the VC function into

a recognizer that extracts linguistic contents, followed by a synthesizer that injects the

desired target information to generate the converted speech.

This thesis contributes to further addressing the data scarcity issues that hide in

the advancement as mentioned above in VC research. The main concept is to apply

pre-training, which is a prevailing paradigm in the modern machine learning era. The

first problem is the high dataset size requirement of seq2seq VC models, owing to
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the complexity of learning such a complex mapping function. A novel pre-training

framework based on text-to-speech (TTS) and automatic speech recognition (ASR)

was proposed, which was inspired by the information perspective of the three tasks.

The core idea is to transfer the linguistically rich hidden representation space in TTS

and ASR to VC. The main result is the availability to use only five minutes of parallel

data to train a seq2seq VC model.

The second question is whether more data can benefit the recognizer in rec-syn-based

VC. Specifically, the potential of applying self-supervised speech representations (S3Rs)

to rec-syn-based VC was studied. Given the supremacy of self-supervised learning

(SSL) in research fields such as computer vision and natural language processing, it is

highly expected that S3Rs can benefit rec-syn-based VC. The main result is a collection

of scientific activities, where the core is an open-sourced toolkit named S3PRL-VC

that supports a unified experimental environment, including the dataset, tasks, model

architecture, and evaluation protocols. A large-scale, systematical study of S3R-based

VC is carried out using the toolkit. It is expected that both VC and S3R researchers

can gain fruitful insights from the results: for the S3R community, using VC as the

downstream task enables the investigation of the S3R model’s ability to disentangle

speaker and content information; for the VC community, this is by far the largest unified

comparative study of S3R-based VC, which could serve as a guide for researchers who

wish to continue on this direction.

Finally, the focus is turned to solving a certain type of VC application where the

ground truth training target is unavailable. For instance, to enhance the naturalness

of dysarthric speech, which is generated by patients suffering from neural diseases,

one might wish to collect the normal version of the patient to train a VC model,

which is impossible. Similarly, collecting native speech from a non-native speaker is
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crucial in training a foreign accent conversion (FAC) model, which is also impossible.

A cascade approach that combines seq2seq and rec-syn-based VC models was first

proposed to tackle this issue. On the dysarthric-to-normal VC task, it was shown that

the naturalness could be improved while the speaker identity preservation needed to

be improved. Similarly, on the normal-to-dysarthric VC task, the severity could be

simulated while the speaker identity was not completely maintained.

On the task of FAC, along with the above-mentioned cascade method, two other

approaches that also utilized the combination of a seq2seq VC model and a rec-syn-

based VC were systematically evaluated. Experimental evaluation results showed that

the three compared methods had their pros and cons, all of which show the potential of

applying these methods to solve these ground-truth-free VC tasks. However, it was also

revealed that due to the ground-truth-free property, when evaluating the VC systems

of these tasks, the evaluation protocol needed to be re-designed to make the results

more trustworthy.

To summarize, the idea of pre-training was applied to tackle the data scarcity prob-

lems in current mainstream VC approaches. The experimental results as well as the

discussions and insights advanced the research field, and have opened up new directions

for future researchers.





1 Introduction

1.1 General background

Voice conversion (VC) aims to convert the speech from a source to that of a target

without changing the linguistic content. Speaker conversion, the process of converting

speech from a source speaker to a target speaker, is one of the most known VC appli-

cations. Despite the many VC applications beyond speaker conversion, to put it more

broadly, all VC applications can be seen as a means to an ultimate goal: unconstrained

speech communication.

Figure 1.1 illustrates how the physical condition of the human body limits the pro-

duction of human speech [1]. For instance, damaged speech organs cause severe vocal

disorders, and the deficient control of the organs can also end up in an accented voice,

while the intention is to speak a foreign language natively. What if one can recover

disabled functions, or even augment our body to enhance communication abilities?

By building VC systems such as speaking aid devices to convert electrolaryngeal (EL)

speech to the original voices of patients with vocal cord damage [2–4], or converting

accented speech of foreigners into native speech [5, 6], speech communication can be

made beyond physical constraints.

Data scarcity has been an all-time challenge for VC, and the problem has become

even more severe in the deep learning era. From early statistical methods to recent

deep neural network (DNN)-based models, almost all approaches to VC are data-
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Figure 1.1: Illustration of the limits of speech communication, and how voice conversion

can break the barrier.

driven. However, it can be assumed that users of VC applications are hesitant to

record numerous speech prompts with specific contents because of the laborious process.

Although there has not been a standard for the amount of data that a user is usually

willing to record, looking back on the past voice conversion challenges (VCCs) [7–9],

it could be observed that only several minutes of speech data was assigned to each

source or target speaker. On the other hand, datasets for other speech synthesis tasks

like text-to-speech (TTS) usually contain hours of data, such as LJSpeech (24 hrs) [10]

and VCTK (44 hrs) [11]. Thus, the focus of this thesis will be on addressing data

scarcity in VC. To address such an issue, one must first understand current mainstream

frameworks and approaches to VC.
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Figure 1.2: Illustration of the training process of a voice conversion framework based

on parallel training data.

1.2 Thesis Scope

The earliest VC research dates back to the 1980s [12], and has been an active research

field for over four decades [13, 14]. If we categorize VC research concerning the data

and granularity point of view, most VC research before the 2010s adopted frame-

based modeling with a parallel corpus. A parallel corpus refers to a set of utterance

pairs from the source and target with identical content (or prompt), and methods or

models that require a parallel corpus to work are often referred to as parallel VC. As

previously stated, it is often assumed that a parallel corpus as small as several minutes

is available [7–9] due to the laborious dataset collection process.

Figure 1.2 shows the training process of a typical VC framework with a parallel

corpus. The importance of using a parallel corpus is that it is crucial to solving the

time alignment problem. Usually, the source and target utterances will have different

lengths since the two speakers speak at different rates. To address such a temporal

difference, one can assume that the same contents spoken by different speakers are

close under a certain distance measure in a particular acoustic feature space. Then, a



4 1 Introduction

time alignment approach can be used to align the source and target acoustic features,

where the dynamic time warping (DTW) algorithm is a common choice. The final

product will then be aligned with source and target acoustic feature sequences of the

same length. Finally, a frame-based model can be learned using the paired acoustic

frames.

This frame-based, parallel VC framework results in three major problems. In the

following subsections, we describe the difficulties and the corresponding solutions which

were mostly developed in the late 2010s.

1.2.1 Problem 1: performance

A straightforward pitfall of frame-based modeling is that the input and output acous-

tic feature sequences will always be of the same length, which means that the temporal

structure is left unchanged. This can lead to poor prosody and speaking style conver-

sion, resulting in degraded speech quality and similarity.

To address this problem, researchers have applied sequence-to-sequence (seq2seq)

models to VC [15]. Seq2seq modeling refers to an end-to-end DNN-based approach

that learns the mapping of the input and output sequences with different lengths,

without making assumptions about the structures (as a contrary example, connectionist

temporal classification (CTC) assumes a monotonic alignment between the inputs and

the outputs). It was shown that seq2seq VC can outperform frame-based models [15,16]

regarding both naturalness and conversion similarity.

However, as seq2seq models are based on DNNs, they generally require more data

to be successfully trained. As seq2seq VC models still require the availability of a

parallel corpus, such a requirement becomes an even bigger problem. In most seq2seq

VC papers [15–18], it was reported that roughly one hour of parallel data was used,
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Figure 1.3: The recognition-synthesis voice conversion framework.

which was much more than the several minutes of data requirement mentioned in

Section 1.1. This raises the following research question: how can we reduce the

parallel dataset requirement of seq2seq VC models?

1.2.2 Problem 2: data requirement

In Section 1.2.1, the research question was how to reduce the parallel dataset size.

What if we do not want to use parallel datasets at all? This leads to the development of

VC methods that do not use a parallel corpus, and such methods (or models) are often

referred to as non-parallel VC. Note that while some define a non-parallel corpus to be

two sets of utterances from the source and target speakers respectively, as using more

data is generally encouraged in modern machine learning, from the practical point

of view it is no longer necessary to use only utterances from the source and target

speakers.

Among the many methods for non-parallel VC, recognition-synthesis (rec-syn) based

VC is one of the most adopted approaches. Figure 1.3 illustrates the rec-syn VC

framework. The rec-syn VC framework is inspired by the most basic definition of VC,

i.e. the preservation of the linguistic contents in the source speech. First, a recog-

nizer extracts the so-called intermediate representation from the source speech. Then,

a synthesizer injects information of the target back to generate the final converted

speech. Theoretically, the performance of such a rec-syn VC framework highly relies
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Converted 
speech

Source 
speech

Source 
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Source 
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Speaker 
identity

NativeForeignAccent

VC 
model

Figure 1.4: Illustration of the task of foreign accent conversion with identity preserva-

tion.

on the disentanglement ability of the recognizer: if the recognizer fails to extract pure

linguistic information such that a certain amount of source information remains, then

the synthesizer will have a hard time generating converted speech with the desired

target attributes since source information resides. Thus, the better the recognizer can

disentangle (or remove) unwanted information, the better the performance will be. As

both the recognizer and synthesizer are often DNN-based models, more data should

ensure better quality. The research question is therefore raised: how can we utilize

more data to improve the performance of the overall performance?

1.2.3 Problem 3: Unavailability of training target

Certain VC applications aim at changing certain speech attributes but not the speaker

identity, which makes collecting the training target unavailable. For instance, an ap-

plication we will be investigating in later chapters is foreign accent conversion (FAC),

which is illustrated in Figure 1.4.
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In this thesis, we refer FAC to the task of “de-accenting”, and readers should avoid

confusing this task to a broader term, “accent conversion”. While in the literature,

accent conversion can be referred to as the conversion between different accents or from

native to accented speech, here FAC refers to converting from non-native to native

speech. Specifically, given an accented speech utterance spoken by a non-native source

speaker, FAC aims to (1) generate a native-sounding version, while (2) preserving the

same speaker identity as the source speaker.

The second requirement makes FAC difficult because it is simply impossible to collect

native speech from a non-native speaker. One may try to apply Seq2seq VC models

described in Section 1.2.1 are not applicable since parallel corpus will not be available.

Non-parallel VC methods described in Section 1.2.2, however, will also not be a suitable

solution. An important drawback of most current non-parallel VC methods is that

they are mostly frame-based models. As stated in Section 1.2.1, frame-based models

are poor at converting prosody, which plays an important role in many applications,

including FAC.

The research question here is: how can we approach these VC applications

where the training target is unavailable?

1.2.4 Solution: Pre-training

A common approach to address data scarcity is pre-training. As opposed to training

from scratch (i.e. from random initialization), model pre-training is a paradigm for

training DNN-based models using a set of model parameters learned from a dataset of

significantly larger scale, regardless of whether the domain of the pre-training dataset

or task [19]. The idea is that feature representation learned on a pre-training task

contains useful information that is transferable to the target task at hand.
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Pre-training is a common training paradigm in the field of computer vision. In the

early 2010s, a supervised pre-training task (e.g. ImageNet classification [20–22]) was

often adopted to enhance the performance of a downstream task with less training

data (e.g. object detection [23–25], segmentation [26,27] or style transfer [28,29]) and

obtained state-of-the-art results. Recently, to reduce the dependency on large-scale

labeled datasets, self-supervised pre-training has been gaining attention. Common

choices of the pretext task include contrastive objectives based on data augmentation

[30, 31] or masked autoencoding [32]. In natural language processing, learning rich

representation through an self-supervised language model objective [33–35] has also

been shown to boost performance.

In speech processing, early applications of pre-training deep neural networks mainly

lay in automatic speech recognition (ASR), with the main goal of speeding up opti-

mization and reducing generalization error [36, 37]. In recent years, unsupervised or

self-supervised speech representation learning utilizing massive, unlabeled speech data

has become a popular research topic [38,39].

1.3 Thesis Overview

This thesis focuses on addressing the three problems described in Section 1.2 with

the power of pre-training. Figure 1.5 shows the overall scope of this thesis. First,

the fundamentals of VC are presented in Chapter 2. A more detailed review of the

two current mainstream approaches for VC, namely seq2seq modeling for parallel VC

and rec-syn-based non-parallel VC, will be presented. Common evaluation metrics and

protocols will also be introduced.

To solve the first problem described in Section 1.2.1, in Chapter 3, we propose a pre-

training technique for seq2seq VC modeling to reduce the requirement of the parallel
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dataset size. Specifically, we identify that ASR and TTS, two of the most studied

tasks in speech processing, have a common property of a comparatively pure linguistic

hidden latent space which is a suitable knowledge source of transfer for VC. With a

novel two-stage pre-training/fine-tuning framework, we show that it is possible to train

a seq2seq VC model with similar quality using only 5 minutes of parallel data, which

is a much-relaxed condition compared to the commonly adopted 1-hour setting.

To solve the second problem described in Section 1.2.2, in Chapter 4, we explore the

possibility of applying self-supervised speech representations (S3Rs) to non-parallel VC.

We contributed to the open-source activity by releasing a new toolkit for VC called

S3PRL-VC, an extension of the self-supervised speech pre-training and representation

learning (S3PRL) toolkit. We present a comparative study of S3R-based VC in various

aspects, including the synthesizer model type, different VC tasks, supervision, and

discretization. We also show a comparison with the state-of-the-art VC systems in

VCC2020 and demonstrate the room for improvement.

To solve the third problem described in Subsection 1.2.3, we propose to combine

both seq2seq modeling and non-parallel frame-based VC methods. In Chapter 5, we

first present an idea to tackle VC problems where the training target is impossible

to collect. The idea is to use a seq2seq model to first modify the temporal structure

which is strongly related to the content-related attributes, then use a non-parallel VC

method to restore the speaker identity. We verify the possibility of applying such

an idea to dysarthric VC and showcase initial investigation results. In Chapter 6,

we further explore two other methods that also combine seq2seq modeling and non-

parallel frame-based VC, and evaluate in total three methods in a unified setting on

the task of FAC. In our experiments, we found that no single method was superior to

the others, and more importantly, we show the difficulties in the evaluation of atypical
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VC applications. Finally, we conclude the thesis in Chapter 7.
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2 Background and related Work

In this chapter, we provide background materials to understand the main contents

of this thesis. In Section 2.1, sequence-to-sequence modeling for voice conversion with

parallel data, including the training objectives and common model architectures, is

first introduced. In Section 2.2, two lines of representative VC approaches that utilize

non-parallel datasets with a frame-based model are covered. Note that this review

can be limited and not fully comprehensive, but it should be sufficient for readers

to understand the remainder of this thesis. Finally, in Section 2.3, commonly used

evaluation metrics and protocols for VC are described.

2.1 Voice conversion based on sequence-to-sequence

modeling with parallel data

Generally speaking, seq2seq models aim to learn a mapping between a source fea-

ture sequence X = x1:n = (x1, · · · ,xn) and a target feature sequence Y = y1:m =

(y1, · · · ,ym) which are often of different length, i.e, n ̸= m [40]. In speech processing,

given a one-dimensional speech signal, it is a common practice to represent it as a

sequence of acoustic feature vectors, where each acoustic feature vector is calculated

from a speech frame given by a pre-defined frame size and frame shift. A commonly

adopted choice is log mel-spectrogram. Thus, when applying seq2seq modeling to VC,
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Figure 2.1: Illustration of the architecture of a sequence-to-sequence VC model.

the source and target feature sequences are exactly the source and target acoustic fea-

ture frames extracted from the respective speech utterance signals. In the remainder

of this thesis, unless specified, the input and output of the seq2seq VC models refer to

the acoustic feature frames instead of the original speech signals.

2.1.1 General architecture and training objectives

Figure 2.1 shows a general architecture of a seq2seq VC model, which is of an en-

coder—decoder structure [40]. The encoder (Enc) first maps the input feature sequence

x1:n into a sequence of hidden representations:

H = h1:n = Enc(x1:n). (2.1)
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The original seq2seq modeling framework [40] was autoregressive (AR), which means

that during the output process, to generate the current output yt at time step t, the

decoder (Dec) takes, additional to the encoder output, i.e. the hidden representations

h1:n, the previously generated features y1:t−1 (some also call them “historical informa-

tion”)into consideration:

ŷt = Dec(h1:n, ˆy1:t−1). (2.2)

When applying seq2seq models to tasks where the output is discrete, for example,

machine translation or speech recognition, the output of the decoder at each time step

is a K + 1-way probability vector where K is the vocabulary size and the extra entry

is for a special stop token that terminates the decoding process if generated. However,

the same mechanism cannot be applied to the task of VC since the outputs are acoustic

feature vectors of continuous values. Therefore, similar to many seq2seq text-to-speech

(TTS) models [41,42], the decoder outputs pass through two separate linear projection

layers, such that one outputs vectors of the same dimension as the acoustic features,

and the other outputs a scalar value that represents the probability that the decoding

process ends at the current time step.

The training objective contains two terms. The first term is an element-wise regres-

sion loss. Although many researchers have used an L1 loss, an L2 loss, or a combination

of them, there has not been evidence on which choice is superior to the others. The

second term is a binary cross-entropy loss for the stop token prediction. In addi-

tion, teacher-forcing is a common practice for training seq2seq VC models. That is, in

Equation 2.2, the “previous generated vectors” during the decoding process are the cor-

responding ground truth target acoustic feature vectors. Such a practice can accelerate

the training process by avoiding the actual AR decoding process.

Some extra components and techniques are adopted in the seq2seq model to improve



16 2 Background and related Work

performance and stabilize training, most of which are inspired by the success of modern

seq2seq TTS models [41,42].

• A prenet is usually added to the decoder, which serves as an information bottle-

neck essential for training the AR process.

• To compensate for the missing future context information in the AR decoder, a

five-layer CNN postnet is used to predict a residual that is added to the projected

output.

• Introducing the reduction factor r greatly helps speed up convergence and re-

duce training time and memory footprint. Specifically, at each decoding step,

r non-overlapping frames are predicted. Since adjacent speech frames are often

correlated, this technique allows the decoder to correctly model the interaction

with the hidden representation sequence.

2.1.2 Model architectures

In this subsection, we describe two commonly used model architectures in seq2seq

VC modeling.

Recurrent neural network based model

The recurrent neural network (RNN) was adopted in the very first seq2seq modeling

paper [40] as it is a straightforward choice for seq2seq modeling due to its ability to

model long-range context. A representative RNN-based seq2seq VC model is ATTS2S-

VC [16], which is based on the Tacotron2 TTS model [42]. Figure 2.2 shows the encoder

and decoder structures.
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Figure 2.2: RNN-based encoder and decoder in seq2seq VC.

The encoder first linearly projects the input log-mel spectrogram, followed by a stack

of convolutional layers, batch normalization, and ReLU activations. The output of the

final convolutional layer is then passed into a bi-directional LSTM layer to generate

the hidden representations.

For each decoder output step, an attention mechanism [43, 44] is used to attend

to different positions of the hidden representation sequence. First, a context vector

ct is calculated as a weighted sum of h1:n, where the weight is represented using an

attention probability vector at = (a
(1)
t , · · · , a(n)t ). Each attention probability a

(k)
t can

be thought of as the importance of the hidden representation hk at the current time

step. As in Tacotron2, the location-sensitive attention is adopted [45], which takes

cumulative attention weights from previous decoder time steps as an additional feature

to encourage forward consistency to prevent repeated or missed phonemes. The context

vector is then concatenated with the prenet output and passed into a stacked uni-

directional LSTM network to predict the r output frames. The procedure mentioned
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above can be formulated as follows:

at = attention(qt−1,h1:n), (2.3)

ct =
n∑

k=1

a
(n)
t hk, (2.4)

yt, qt = Dec(y1:t−1, qt−1, ct). (2.5)

In the following subsubsections, we describe two additional losses that are used in

the ATTS2S-VC framework, with the motivation to further stabilize the training of

the seq2seq model.

Guided Attention Loss The guided attention (GA) loss was first introduced in

seq2seq TTS [46]. The motivation is that for seq2seq speech synthesis tasks like TTS

and VC, the attention alignment is usually monotonic and linear. Therefore, encour-

aging the attention matrix to be diagonal can speed up attention learning and conver-

gence.

The GA loss assumes that the i-th element in the input feature sequence progresses

nearly linearly concerning the j-th element of the output feature sequence, i.e., i ∼ αj,

where α ∼ n
m
. Therefore, the attention matrix A = [a1, · · · ,am] should be a nearly

diagonal. One may therefore define a penalty matrix G, where the i, j-th element gi,j

is defined:

gi,j = 1− exp

{
−( i

n
− j

m
)2

2σ2
g

}
, (2.6)

where σg controls how close A is to a diagonal matrix. The guided attention loss Lga

is then defined as

Lga = λga||G⊙A||1, (2.7)

where ⊙ indicates an element-wise product and λga is the weight for the guided atten-

tion loss.
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Context Preservation Loss The context preservation (CP) loss was first proposed

in [16] with the motivation to maintain linguistic consistency after conversion. Specif-

ically, to encourage the source encoder to generate meaningful hidden representations,

two additional networks are introduced as the context preservation mechanism: a

source decoder SrcDec for reconstructing the source feature sequence from the hid-

den representations, and a target decoder TarDec for predicting the target feature

sequence from the context vectors, C = [c1, · · · , cm]:

X̃ = SrcDec(H), (2.8)

Ỹ = TarDec(C). (2.9)

The context preservation loss is then defined as:

Lcp = λcp(||X̃−X||1 + ||Ỹ −Y||1), (2.10)

where λcp is the weight for the context preservation loss.

Transformer-based model

The Transformer [47] refers to a type of DNN architecture that relies solely on feed-

forward network (FFN) blocks and attention blocks, and has gained much success in

many speech processing tasks [48]. Here we describe a representative Transformer-

based seq2seq VC model named the Voice Transformer Network (VTN) [49]. In the

following subsubsections, we first describe the overall structure of VTN, then we de-

scribe core components used in a typical Transformer model.

Overall structure Figure 2.3 shows the structure of VTN. The encoder in a typical

Transformer model is composed of a stack of encoder blocks, where each encoder block

consists of a multi-head attention (MHA) sublayer and an FFN sublayer, followed by
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Figure 2.3: Transformer-based encoder and decoder in seq2seq VC.

a residual connection and layer normalization [50]. The MHA layers in the encoder are

self-attention layers since the queries, keys, and values are all from the output from

the previous layer.

The encoder in VTN is slightly different from that of the original Transformer since

the latter was originally designed for the task of machine translation, whose input was

discrete. For speech processing tasks where the input is speech (typically represented

by a sequence of acoustic features), such as speech recognition or VC, it is a common

practice to downsample the input. As in [51], a stack of two convolutional layers
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with stride 2 × 2 is used to downsample the input by a fraction of 4. Doing so can

not only reduce the memory footprint but also speed up attention convergence and

approximate phoneme-level or even character-level linguistic contents [17]. The output

of the convolutional stack is then sent through a linear projection layer. Then, a scaled

positional encoding (SPE) is added, and then the output is sent to the encoder.

The decoder is also a stack of identical decoder blocks as in the encoder. In each

decoder block, the first sublayer is a masked self-attention MHA sublayer, where a

mask is utilized such that at time step t, only vectors with time index up to and

including t can be accessed. This preserves the AR property of the model. Then, an

MHA sublayer uses the outputs from the previous layer as queries and H as the keys

and values, which ensembles the encoder—decoder attention described in Section 2.1.2.

Finally, an FFN sublayer is used, as in the encoder. Again, all sublayers are wrapped

with a residual connection and layer normalization.

Core components in the Transformer model Below we describe the core compo-

nents used in Transformer models. In a Transformer model, a hyper-parameter dmodel

needs to be first decided, which in general defines the size of the model.

Multi-head attention (MHA) sublayer. An MHA layer is defined as:

MHA(Q,K,V) = [head1, · · · , headh]W
O, (2.11)

headi = Att(QWQ
i ,KWK

i ,VWV
i ), (2.12)

where Q, K, and V denote the input matrices that, following [47], are referred to as the

query, key, and value, respectively. MHA uses h different, learned linear projections

WQ,WK ,WV to map the inputs to different heads, and then perform the Att operation

in parallel. The outputs from all heads are concatenated and projected with WO. As



22 2 Background and related Work

in [47], the Att operation is implemented scaled dot-product attention is used:

Att(Q,K,V) = softmax(
QKT

√
datt

)V, (2.13)

where datt is the attention dimension.

Position-wise feed-forward network (FFN) layer. An FFN layer is defined as:

FFN(x) = max(0,xW1 + b1)W2 + b2, (2.14)

which is independently applied at each time step (position) with different parameters

from layer to layer.

Layer normalization and residual connection. Around either of the above-

mentioned sublayers, a residual connection followed by layer normalization [50] is em-

ployed. For input X of a sublayer, the output is given as:

LayerNorm(X+ Sublayer(X)). (2.15)

Due to the residual connections, all sublayers have the same output dimension dmodel.

Scaled positional encoding (SPE). In the original Transformer [47], since no re-

current relation is employed in the Transformer, to let the model be aware of informa-

tion about the relative or absolute position of each element, the triangular (sinusoidal)

positional encoding (PE) [52] is added to the inputs to the encoder and decoder. In

this work, we adopt the SPE [53], which is a generalized version of the original PE

that scales the encodings with a trainable weight α, so that they can adaptively fit the

scales of the encoder and the decoder:

SPE(t) =


α · sin( t

10000
2t

dmodel

), if t is even,

α · cos( t

10000
2t

dmodel

), if t is odd.

(2.16)



2.2. Voice conversion based on frame-based modeling with non-parallel data 23

Recognizer Synthesizer
Intermediate
representation

Input speech Converted speech

Source
info

Contents

Target
info

Contents

𝑿
𝑯

𝒀

Figure 2.4: A voice conversion framework based on the information perspective, which

allows training with non-parallel data.

2.2 Voice conversion based on frame-based model-

ing with non-parallel data

Collecting a parallel corpus for VC training is expensive in terms of time, money, and

human labor. Therefore, researchers have been studying non-parallel VC extensively.

A line of work makes use of a reference speaker to record training utterances that are

parallel to those of the source and target speakers [54–59]. Another line of work is

based on the recent success in cycle-consistency training [60,61].

This section focuses on a particular line of work that reflects the basic definition

of VC, which is to preserve the linguistic contents in the source speech. Figure 2.4

illustrates the conversion process. Starting from the source speech X, a recognizer (or

encoder) can first be used to extract the spoken contents, H. The extracted output is

referred to as the intermediate representation. It is then consumed by the synthesizer

(or decoder) to generate the converted speech, Y. The following equation describes

such a process.

Y = Synth(H),H = Recog(X). (2.17)

It is of most importance that the recognizer can extract the essential information

that one wishes to preserve, depending on the actual application. For instance, in
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Table 2.1: A comparison of the autoencoding-based framework and the recognition-

synthesis-based framework for voice conversion with non-parallel data.

Framework
Optimization of the

recognizer and the synthesizer

How to extract

essential information

Autoencoding Jointly
Proper information

bottleneck

Recognition-synthesis
Separately and

sequentially

Supervision or proper

training objectives

speaker conversion, the intermediate representation should contain mostly linguistic

content but not any source speaker information. Based on such a representation, the

synthesizer is expected to inject the target speaker’s identity and generate the converted

speech. Now if the representation, unfortunately, contains remaining source speaker

information, then the target speaker information injected by the synthesizer will be

messed up, hurting the final conversion similarity. On the other hand, such a speaker-

independent representation may not be desired in the application of foreign accent

conversion, since the source speaker identity should be preserved.

The focus of this line of research then becomes how to disentangle the spoken

contents along with the desired attributes from the other factors in speech.

The efforts dedicated by the past researchers can be categorized into two types: the

autoencoding-based approach, and the recognition-synthesis (rec-syn)-based

approach1. Table 2.1 summarizes the two biggest differences. In Section 2.2.1, the

autoencoding-based approach is first introduced. In Section 2.2.2, the rec-syn-based

approach is introduced.

1The term recognition-synthesis was first defined in [62], which was only referred to VC systems

composed by an ASR model and a speaker-dependent synthesizer. In this thesis, it is defined to be

any VC system that separately trains the recognizer and synthesizer.
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Figure 2.5: Illustration of an autoencoding-based speaker voice conversion framework.

2.2.1 Autoencoding-based approach

In machine learning, an autoencoder (AE) is a type of DNN that learns a useful,

efficient coding of unlabeled data. An AE has the following properties:

• An AE is composed of an encoder that transforms the input data into an en-

coding, and a decoder that tries to reconstruct the input data from the encoded

representation.

• A vanilla AE only uses a reconstruction objective to train the encoder and de-

coder jointly. As a result, the model might accidentally learn to just copy the

input data, such that perfect reconstruction is achieved (i.e., the training loss

becomes zero), and no useful feature is learned. To avoid this tendency, certain

regularization techniques are necessary.

The above-mentioned properties exactly match the framework described at the begin-

ning of Section 2.2. It is therefore a naive and straightforward idea to apply such a

framework to VC.

AutoVC [63] is a representative AE-based VC model. Figure 2.5 shows an illus-

tration of the structure of AutoVC when applied to speaker conversion. The roles

of the encoder and decoder are essentially the same as the roles of the recognizer

and synthesizer described previously, respectively. It is worthwhile mentioning that to
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train an AE-based VC model for speaker conversion, it is a common practice to use a

multi-speaker training corpus. If the hidden representation is ideal, i.e., contains no

speaker information, then it would be impossible for the decoder to reconstruct the

input speech data with such a feature alone. It is therefore necessary to supply the

decoder with a speaker representation. Another interpretation is that, by providing

the decoder such a clue about the speaker, the hidden representation is encouraged to

be free from speaker information, in consideration of encoding efficiency. Another note

is that, as a result of using a multi-speaker training corpus, the encoder is considered

speaker-independent, which means that it can effectively encode speech from speakers

unseen during training.

AutoVC proposed to carefully tune the dimensionality of the hidden representation.

Others have proposed a variety of ways to regularize the encoder, including variational

autoencoding [64–66], vector quantization [67–69], instance normalization [70], and

hand-crafted speech related constraints [71].

A major drawback of autoencoding-based approaches is the trade-off between recon-

struction accuracy and generalization ability. As mentioned earlier, the reconstruction

loss could easily hit zero by learning an identical mapping, which is not desired since

the encoder then does not disentangle any information, including those that should be

discarded. On the other hand, sacrificing reconstruction ability leads to sub-optimal

quality, resulting in blurry and unclear speech. As a result, in the voice conversion

challenge (VCC) 2020 [9], the best-performing autoencoding-based system only ranked

13-th out of the 31 teams in task 1 and ranked 9-th out of the 28 teams in task 2.
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Figure 2.6: The training and conversion procedures of recognition-synthesis based voice

conversion.

2.2.2 Recognition-synthesis-based approach

Rec-syn-based VC takes another approach and optimizes the recognizer and syn-

thesizer not only separately but sequentially. Figure 2.6 illustrates the training and

conversion processes. The recognizer is first trained on a pre-training dataset, which

often contains multi-speakers, as in autoencoding-based VC. After the recognizer is

trained, the synthesizer is then trained to reconstruct speech from the intermediate

representation, which is extracted using the trained recognizer. In the conversion

phase, the converted speech is generated following Eq. 2.17. The recognizer takes the

source speech as input and extracts the intermediate representation, which is consumed
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by the synthesizer to generate the converted speech.

Rec-syn-based VC has been gaining attention, mostly due to its superior performance

compared to that of autoencoding-based VC. In VCC2020, all the systems that outper-

formed the best-performing autoencoding-based VC system were rec-syn-based. One

hypothesis is that rec-syn-based VC benefits from the decoupling of the recognizer and

synthesizer training: the training of the recognizer is to extract the desired represen-

tation, and the synthesizer is trained to optimize the reconstruction quality. Another

advantage is that the training data of the recognizer and the synthesizer can be differ-

ent. In autoencoding-based VC, because of the reconstruction loss, only high-quality

datasets like the VC training set can be used. On the other hand, in rec-syn-based

VC, while the synthesizer training is also limited to the high-quality VC training set,

there is no such constraint on the recognizer, such that it can be trained on a massive

dataset that is much larger than the VC training set. It is believed that the increased

data and the sole objective function of the recognizer training form a stronger infor-

mation bottleneck for preserving the linguistic contents, compared to those used in the

autoencoding-based framework.

Efforts dedicated to this line of research can be divided into two directions. The

first direction is to improve the reconstruction quality by adopting better generative

modeling techniques, such as generative adversarial networks (GANs) [72], normalizing

flows [73], variational inference [64], diffusion modeling [74, 75], or a combination of

them.

The second direction develops different types of intermediate representations, which

results in different recognizer designs and training schemes. In the literature, many

types of intermediate representations have been used, all of which have their respective

pros and cons. Table 2.2 presents a comparison of the features based on various aspects.
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Table 2.2: A comparison of intermediate representations in recognition-synthesis-based

voice conversion.

Representation Text
Phonetic

Posteriorgram

Self-supervised

speech representations

Extractor ASR model self-supervised model

Training data labeled data unlabeled data

Resolution token level frame level

Continuous? discrete continuous can be either

Examples [76,77] [78–80] [81–86]

In the following, we introduce three widely used categories.

Text

Text is a straightforward choice, as one can simply concatenate a pre-trained ASR

and text-to-speech (TTS) model. In VCC2020, one of the baseline systems called

ASR+TTS [76] and the top system of the intra-lingual task [77] both adopted text

as the intermediate representation and achieved outstanding performance in terms of

similarity. This is mainly owing to the discrete and token-level nature of text. Since

prosodic information including the speaking rate and the pitch pattern are discarded

after recognition, the synthesizer needs to use a powerful model like a seq2seq network

to reconstruct the target characteristics. However, this approach suffers from mispro-

nunciation when the accuracy of the ASR and TTS model is insufficient, as shown

in [76]. There are also VC scenarios where the source style needs to be preserved, such

as singing VC [87].
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Phonetic posteriorgrams or bottleneck features

Phonetic posteriorgrams (PPGs) were first applied to VC in [88] represent the frame-

wise posterior probabilities of each phonetic class, which are derived from the acoustic

model (AM) of an HMM-based ASR model. The training target of the AM is phoneme

labels, so only the output of the last layer of the AM has the physical meaning of PPG,

but some have proposed to use the output from other layers. For example, the system

in [17] used the output before the softmax layer and referred to them as bottleneck

features (BNFs). Either PPGs or BNFs are frame-level continuous features, thus better

preserving the linguistic contents and can help produce high-quality speech.

VC systems based on PPG or BNF have been showing their supremacy in recent

VCCs. They first showed their power by raking first in VCC2018 [89]. Later on, in

VCC2020, several top-performing systems also used such a feature [78–80]. It was

also shown in the challenge results that many systems based on such a feature were

top-ranking systems.

However, the frame-level nature makes the conversion of the speaking rate difficult.

Efforts needed for the frame-level labels of the ASR dataset also raised the difficulty

of constructing the system.

Self-supervised speech representations

To reduce the labeling cost of training ASR models, applying self-supervised learning

(SSL) to VC has become increasingly popular. Being free from labeled data not only

reduces the labeling cost but also makes it possible to use more unlabeled datasets

and work under low-resource settings. SSL has been applied to a wide variety of VC

settings, including any-to-one VC [82], many-to-many VC [81], any-to-any VC [83,84]

and cross-lingual VC [85].
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The focus of Chapter 4 will be on SSL-based VC. A review of SSL-based speech

representation learning as well as an in-depth study on SSL-based VC will be presented.

2.3 Common evaluation metrics and protocols in

Voice conversion

In this section, common evaluation metrics and protocols in VC are introduced.

For speech synthesis tasks such as TTS and VC, the gold standard for evaluation is

listening tests, where human raters listen to samples generated by different methods

and give their opinions. The reason why subjective test results are favored compared

to objective metrics is that current objective metrics do not align well with human

perception [90]. However, it is still helpful to use objective metrics to monitor the

performance during model development, to reduce the cost of conducting subjective

tests. In the following subsections, the subjective evaluation protocol is first described.

Then, several objective evaluation metrics used in this work will be introduced.

Subjective evaluation methods

Two common dimensions are measured in a subjective test for evaluating a VC

system.

• Naturalness. Naturalness refers to the degree of how natural the generated

voice sample sounds. Usually, the upper bound is defined by the samples of the

target speaker. In VC research, the term “naturalness” is often used instead

of “quality” to distinguish it from other performance factors. The most com-

monly used protocol for naturalness in VC research [7–9] is the mean opinion
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score (MOS) test [91]. Subjects were asked to evaluate the naturalness of the

converted and natural speech samples on a scale from 1 (completely unnatural)

to 5 (completely natural).

For example, in the voice conversion challenge (VCC) 2020, the following instruc-

tion is given:

Listen to the following audio and rate it for quality. Some of the audio

samples you will hear are of high quality, but some of them may sound

artificial due to deterioration caused by computer processing. Please

evaluate the voice quality on a scale of 1 to 5 from “Excellent” to

“Bad.” Quality does not mean that the pronunciation is good or bad.

If the pronunciation of the English is unnatural but the sound quality

is very good, please choose “Excellent.”

They were then asked to rate how natural the speech sounded on a five-point

scale: (1) Bad, (2) Poor, (3) Fair, (4) Good, and (5) Excellent.

• Conversion similarity. Conversion similarity refers to how similar the speaker

identity of the generated voice sample is compared to the target speaker. A

commonly used protocol is the VCC style test, which was adopted in the past

VCCs [7–9]. Specifically, listeners are given a pair of speech utterances consisting

of a speech sample from the target speaker and a converted speech sample. Then,

they were asked to determine whether the pair of utterances could be produced

by the same speaker, with 4-level confidence in their decision, i.e., sure or not

sure.

In the voice conversion challenge (VCC) 2020, the following instruction is given:

Please listen to the following two audio samples and rate them for
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speaker similarity. Please consider who is speaking according to the

characteristics of the sound and then make a choice using a 4-level

scale that varies from “Same (sure)” to “Different (sure)” to rate the

speaker similarity of the two audio samples. Please do not consider the

content or language to which you are listening.

They were then asked to rate the speaker similarity of the two samples on a

four-point scale: (4) same speaker, absolutely sure, (3) same speaker, not sure,

(2) different speaker, not sure, (1) different speaker, absolutely sure.

The results can be presented in two ways. The first way, which is used in VCCs, is

to present the raw results in the form of stacked bar charts. The other approach

is to show the combined percentage of (4) same speaker, absolutely sure, and (3)

same speaker, not sure.

Objective evaluation metrics

In this thesis, the following objective evaluation metrics are used.

• Mel cepstrum distortion (MCD) [92]. The MCD is a commonly used mea-

sure of spectral distortion in VC, which is based on mel-cepstral coefficients

(MCCs). It is defined as:

MCD[dB] =
10

log 10

√√√√2
K∑
d=1

(mcc
(c)
d −mcc

(t)
d )2, (2.18)

where K is the dimension of the MCCs and mcc
(c)
d and mcc

(t)
d represent the d-th

dimensional coefficient of the converted MCCs and the target MCCs, respectively.

In practice, MCD is calculated in an utterance-wise manner. A dynamic time

warping (DTW) based alignment is performed to find the corresponding frame
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pairs between the non-silent converted and target MCC sequences beforehand.

In this thesis, the WORLD vocoder [93] for MCC extraction and silence frame

decisions and set K = 24.

• F0 root mean square error (F0RMSE). F0RMSE refers to the RMSE be-

tween the F0 of converted speech and that of the reference target speech. Similar

to the calculation of MCD, DTW-based is performed and we take only the non-

silent frames into account.

• Character/word error rate (CER/WER). The CER/WER is a rough esti-

mate of the intelligibility of the converted speech.

• ASV: This metric, along with the protocol for calculating such a metric, is

used in some recent VC literature [83, 84]. It calculates the accept rate from

a pretrained automatic speech verification model which measures whether the

speaker identity is converted by calculating the cosine similarity using speaker

embeddings [94]. Specifically, the cosine similarity of the d-vectors [95] extracted

from each converted utterance and the corresponding reference is calculated.

Then, the percentage of the testing utterances whose cosine similarity exceeds a

pre-calculated threshold is reported.

2.4 Summary

In this chapter, fundamental background knowledge for understanding this thesis

was reviewed. In Section 2.1, seq2seq VC modeling with parallel data was intro-

duced, including two commonly used model architectures and the training objectives.

In Section 2.2, non-parallel frame-based VC methods were introduced. Specifically,
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two representative lines of approaches, namely autoencoding-based and rec-syn-based

methods, were introduced. Finally, in Section 2.3, the commonly used objective evalu-

ation metrics and subjective evaluation protocols for VC are described. The contents

in this chapter will be frequently referenced in later chapters in this thesis, and it is ex-

pected that readers will develop a deeper understanding while reading the subsequent

chapters.





3 Pre-training for

Sequence-to-sequence Voice

Conversion

In this chapter, a novel pre-training method for sequence-to-sequence seq2seq mod-

eling for voice conversion (VC) is described. The goal is to reduce the parallel dataset

requirement of seq2seq VC models. Specifically, a two-stage pre-training approach

is proposed to transfer knowledge from text-to-speech (TTS) and automatic speech

recognition (ASR). The benefits of transferring knowledge from these two tasks are

two-fold: (1) the task nature of TTS and ASR makes both of them a proper source to

transfer knowledge from, and (2) the abundant resource contributed by the research

community makes it easily accessible. Experimental results show that the proposed

pre-training method can (1) improve performance compared to training from scratch

in a high-resource setting, and (2) greatly reduce performance degradation when the

training data size is limited.

3.1 Introduction

Compared to traditional machine learning models used in VC such as Gaussian

mixture models [96], DNN-based models contain more model parameters, and thus

typically require a larger amount of dataset to train. As described in Section 1.2.1,
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most seq2seq VC papers [15–18] report results by using roughly one hour of parallel

data. However, it is commonly assumed that only several minutes of parallel data

is accessible in VC [7–9]. As we will show in later sections, directly training seq2seq

models with, for instance, five minutes of parallel data suffers from severe performance

degradation. It is therefore desirable to develop a solution to reduce the parallel dataset

requirement of seq2seq VC models.

As described in Section 1.2.4, there has been a significant amount of effort dedicated

to investigating different pre-training methods and objectives for different speech pro-

cessing tasks. Nonetheless, different pre-training objectives lead to different represen-

tations, and an effective objective for seq2seq VC is still unclear.

In this chapter, a pre-training technique to transfer knowledge from two speech pro-

cessing tasks, namely TTS and ASR, is proposed. They are referred to as TTS-oriented

pre-training and ASR-oriented pre-training, respectively. There are two reasons behind

the use of these two tasks.

• Resource. ASR and TTS are among the speech processing fields that have

drawn the most attention, and an abundant amount of resources have been made

publicly available. One can even say that the great success enjoyed by ASR and

TTS largely owes to the vast large-scale corpora contributed by the community.

These rich resources are believed to benefit VC which suffers from data scarcity.

• Task nature. In recent years, ASR and TTS systems based on neural seq2seq

models have been shown to outperform traditional methods [41,97]. It is believed

that lying at the core of these models is the ability to generate effective inter-

mediate representations, which facilitates correct attention learning that bridges

the encoder and the decoder.

Figure 3.1 shows a unified comparison of TTS, ASR, and VC from an information
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Figure 3.1: Illustration of the relationship of VC, TTS, and ASR from an information

perspective.

perspective. Roughly speaking, speech consists of the linguistic contents and the

speaker identity. The goal of VC is to remove the source speaker information

from the source speech, and then inject the identity of the target speaker. Thus,

a speaker-free intermediate feature space would be essential for a successful VC

model, which is hard to facilitate given only a parallel corpus. On the other

hand, TTS and ASR both aim to find a mapping between text and speech, as

the former tries to add speaker information to the source while the latter tries to

remove it. It is therefore suspected that the intermediate hidden representation

spaces of these two tasks contain somewhat little speaker information and serve
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as a suitable fit for VC.

The proposed method enjoys several advantages. First, it relies on supervised pre-

training with well-defined speech processing objectives. As popular speech processing

tasks (i.e. TTS and ASR) are adopted, large-scale datasets can be assumed easily

accessible thanks to the vastly growing community. Also, the proposed method is

flexible in that it needs neither the text label of the VC data nor carefully designed

regularization methods, yet can still achieve great data efficiency. Finally, it is expected

that the performance of pre-training would benefit from the rapid development of state-

of-the-art models, thus improving the quality of the downstream VC task.

The contributions of this chapter are as follows:

• The TTS-oriented and ASR-oriented pre-training are proposed for seq2seq VC.

Through systematical objective and subjective evaluations, it is shown that both

are effective with sufficient data, while only TTS pre-training remains robust

against the reduction of data.

• The hidden representation spaces of the learned models using different pre-

training tasks are visualized, and their relationship to the performance is also

shown.

• Two different model architectures for seq2seq VC, namely recurrent neural net-

works (RNNs) and Transformers, are examined. It is shown that the latter is

superior to the former, which is consistent with the finding in most speech pro-

cessing tasks [48].
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3.2 Method

In seq2seq models for speech applications, effective intermediate representations can

facilitate correct attention learning that bridges the encoder and the decoder, thus

crucial to success. By the definition of VC, it is natural to try to encode the linguistic

contents of the source speech into the hidden representations so that they can be

maintained. Thus, it is conjectured that the core ability of successful seq2seq VC

models is to generate and utilize high-fidelity hidden representations.

In theory, both TTS and ASR tasks aim to find a mapping between two modalities:

speech and text. As speech signals contain all essential linguistic information, the

hidden representation spaces induced by these two tasks should lie in the middle of the

spectrum between speech and text. Thus, it is hypothesized such space is desirable for

seq2seq VC models, and thus suitable for pre-training.

Figure 3.2 shows the proposed two-stage training procedure. In the first pre-training

stage, a large-scale corpus is used to learn the initial seq2seq model parameters as

a prior; then, in the second stage, the seq2seq VC model is initialized with the pre-

trained model parameters and trained with a relatively smaller VC dataset. The goal of

this pre-training procedure is to provide fast, sample-efficient VC model learning, thus

reducing the data size requirement and training time. In addition, this setup is highly

flexible in that (1) the speakers of the datasets used in pre-training and fine-tuning

need not be the same, and (2) the utterances between the pre-training corpus and the

VC dataset need not be parallel.

Let the parallel VC dataset be DVC = {Ssrc,Strg}, where Ssrc,Strg denote the source,

target speech, respectively. Our goal is to find a set of prior model parameters to train

the final encoder EncSVC and decoder DecSVC. In the following subsections, the details

of the pre-training and fine-tuning processes are described.
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Figure 3.2: Illustration of the concept of pre-training from seq2seq TTS or ASR to

seq2seq VC.

3.2.1 TTS-oriented pre-training

In TTS-oriented pre-training, it is assumed that access to a large single-speaker

TTS corpus DTTS = {TTTS,STTS} is available, where TTTS, STTS denote the text and

speech of the TTS speaker respectively. The pre-training can be broken down into two

steps.

A.1 Decoder pre-training : As in A.1 in Figure 3.3, the decoder is pre-trained, on

DTTS, by training a conventional TTS model composed of a text encoder EncTTTS

and a speech decoder DecSTTS.

A.2 Encoder pre-training : Then, as in A.2 in Figure 3.3, the encoder is pre-trained,
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Figure 3.3: Diagram of the pre-training procedures for TTS and ASR. Top left: TTS-

oriented pre-training. Top right: ASR-oriented pre-training. Bottom: VC model train-

ing.

also on the same DTTS, by training an autoencoder which takes STTS as input

and output. The decoder here is the pre-trained DecSTTS and the parameters

are fixed so that they are not updated during training. The desired pre-trained

encoder EncSTTS can then be obtained by minimizing the reconstruction loss.

The intuition of the encoder pre-training step is to obtain an encoder capable of

encoding acoustic features into hidden representations that are recognizable by the pre-

trained decoder. Another interpretation is that the final pre-trained encoder EncSTTS

tries to mimic the text encoder EncTTTS. In the first decoder pre-training step, since text

itself contains pure linguistic information, the text encoder EncTTTS is ensured to learn

to encode an effective hidden representation that can be consumed by the decoder

DecSTTS. Fixing the decoder in the encoder pre-training process, as a consequence,

guarantees the encoder to behave similarly to the text encoder, which is to extract

fine-grained, linguistic-information-rich representations.



44 3 Pre-training for Sequence-to-sequence Voice Conversion

3.2.2 ASR-oriented pre-training

In ASR-oriented pre-training, it is assumed that a large multi-speaker ASR corpus

DASR = {SASR,TASR} is available, where SASR, TASR denote the speech and text

data in DASR, respectively. Similar to TTS-oriented pre-training, the ASR-oriented

pre-training is again broken down into two steps.

B.1 Encoder pre-training : As shown in B.1 in Figure 3.3, the encoder is first pre-

trained on DASR by training a conventional ASR model consisting a speech en-

coder EncSASR and a text decoder DecTASR.

B.2 Decoder pre-training : The decoder pre-training procedure is depicted in B.2 in

Figure 3.3. Note that the decoder pre-training here is performed on DTTS, rather

than on DASR. This is because DASR is a multi-speaker corpus, but the VC

model architecture in this chapter focuses on one-to-one VC, i.e. modeling the

conversion between one source speaker and one target speaker, thus cannot model

individual speaker characteristics. Again, the decoder pre-training uses STTS as

input and output, and the encoder is the pre-trained EncSASR and kept fixed

during training. To speed up convergence, the decoder is initialized with the one

obtained in TTS decoder pre-training, namely DecSTTS. The desired pre-trained

decoder EncSASR can then be obtained by minimizing the reconstruction loss.

The intuition of the ASR decoder pre-training differs from that of the TTS encoder

pre-training. The ASR speech encoder EncSASR, trained with the ASR objective, should

generate a compact hidden representation for decoding underlying linguistic contents.

Such representations are believed to be easier to map to speech, thus suitable for pre-

training the speech decoder DecSASR.
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3.2.3 VC model fine-tuning

Finally, DVC is used to train the desired VC models EncSVC and DecSVC, with the

encoder initialized with either EncSTTS or EncSASR, and the decoder with DecSTTS or

DecSASR, respectively. As we will show later, the pre-trained model parameters serve as

a very good prior for adapting to the relatively scarce VC data, achieving significantly

better conversion performance.

3.3 Experimental settings

3.3.1 Data

For DVC, the CMU ARCTIC database [98] was used in the experiments, which

contained parallel recordings of professional US English speakers sampled at 16 kHz.

Data from four speakers were used: a male source speaker (bdl) and a female source

speaker (clb), as well as a male target speaker (rms) and a female target speaker (slt).

100 utterances were selected for each validation and evaluation set, and the remaining

932 utterances were used as training data.

For DTTS, a US female English speaker (judy bieber) from the M-AILABS speech

dataset was used [99]. The sampling rate was 16 kHz. The training set contained

15,200 utterances, which was roughly 32 hours long.

For DASR, the LibriSpeech dataset [100] was used. The sampling rate was 16 kHz.

The train-clean-100 and train-clean-360 sets were combined to get 460 hours of data

from roughly 1170 speakers.
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3.3.2 Implementation

The seq2seq model backbone was either the Voice Transformer Network (VTN) de-

scribed in Section 2.1.2 or the RNN-based model described in Section 2.1.2. The

experiment was carried out on the open-source ESPnet toolkit [101, 102], including

feature extraction, training, and benchmarking. The official implementation has been

made publicly available1. Interested readers are recommended to directly refer to the

settings and configurations online. For the acoustic features, 80-dimensional mel fil-

terbanks with 1024 FFT points and a 256-point frame shift were used as the acoustic

features. The LAMB optimizer [103] was used, and the learning rate was set to 0.001.

3.3.3 Waveform synthesis module

To synthesize the final converted waveform from the generated acoustic features,

the Parallel WaveGAN (PWG) [104] was used, which supported parallel, faster than

real-time waveform generation2. For each target speaker, a speaker-dependent PWG

was trained by conditioning on natural mel spectrograms extracted from the training

data of each target speaker. Note that in the experiments, even for cases where only a

subset of DVC can be accessed, the PWG trained with the full training dataset was still

used, instead of training separate PWGs w.r.t. different training data sizes. This was

because the goal of the experiment was to demonstrate the effects of various methods,

instead of reflecting true scenarios.

1Originally the implementation was released as a part of ESPNET: https://github.com/espnet/

espnet/tree/master/egs/arctic/vc1. Later on, an isolated toolkit was released at https://

github.com/unilight/seq2seq-vc. Note that some settings of the latter, including the pre-training

dataset and evaluation model, are slightly different from that in the former.
2The open-source implementation at https://github.com/kan-bayashi/ParallelWaveGAN was

used.
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3.3.4 Evaluation metrics

Subjective evaluation tests were conducted by following the protocols described in

Section 2.3. They were performed using the open-source toolkit [105] which imple-

mented the ITU-T Recommendation P.808 [106] for subjective speech quality assess-

ment in the crowd using the Amazon Mechanical Turk (Mturk), and screened the

obtained data for unreliable ratings. More than fifty listeners were recruited. A demo

web page with samples used for subjective evaluation is available3.

For objective evaluation metrics, the following were used: MCD, F0RMSE, and

CER/WER. For definitions, please refer to Section 2.3. Here the F0RMSE is reported

because seq2seq modeling can greatly improve prosody conversion. The ASR model

used for calculating CER/WER was based on the Transformer architecture [51] and

was trained using the LibriSpeech dataset [100]. The CER and WER for the ground-

truth validation set were 0.9% and 3.8%, respectively, which could be regarded as the

upper bound. Note that to avoid overfitting, the validation set MCD was used as the

criterion for model selection, and the best-performing models proceeded to generate

the samples for the subjective test.

3.4 Experimental evaluation results

3.4.1 Effectiveness of TTS-oriented pre-training on RNN and

Transformer-based models

First, the effectiveness of TTS-oriented pre-training on not only Transformer-based

(VTN) but also RNN-based seq2seq VC models was demonstrated. From the objective

3https://unilight.github.io/Publication-Demos/publications/vtn-taslp/index.html
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evaluation results shown in Table 3.1, the following observations can be made.

• First, without pre-training, both VTN and RNN could not stay robust against

the reduction of training data. The performance dropped dramatically with the

reduction of training data, where a similar trend was also reported in [62]. This

result identified the data efficiency problem of seq2seq VC.

• By incorporating TTS-oriented pre-training, both VTN and RNN exhibited a

significant improvement in all objective measures, where the effectiveness was

robust against the reduction in the size of training data. With only 80 utterances,

both models could achieve comparable performance to that of using 932 training

utterances except the F0RMSE, where in the case of VTN, the intelligibility was

even better.

From the subjective evaluation results in Table 3.2, the following observations were

obtained.

• Without pre-training, the VTN and RNN suffered from about 1.2 and 0.8 MOS

points drop when the training data reduced from 932 to 80 utterances.

• With TTS-oriented pre-training applied, the naturalness of VTN and RNN im-

proved by more than 1 point with 932 utterances and more than 2 points with

80 utterances.

• When the training data was reduced, there was only a very limited performance

drop. These results demonstrated the effectiveness of the TTS-oriented pre-

training technique.
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3.4.2 Comparison of TTS-oriented and ASR-oriented pre-training

Next, the effectiveness of TTS-oriented and ASR-oriented pre-training was com-

pared. The following observations could be obtained from Tables 3.1 and 3.2.

• With the full training set, ASR-oriented pre-training could bring almost the same

amount of improvement compared to TTS-oriented pre-training.

• As the size of the training data reduces, the performance of the ASR-oriented

pre-trained model dropped significantly, except for F0RMSE. This showed that

ASR-oriented pre-training lacked the robustness essential for practical VC.

To investigate the failure of ASR-oriented pre-trained models against limited train-

ing data, the ASR result of a randomly-picked converted sample from the evaluation

set using TTS-oriented and ASR-oriented pre-trained VTNs is shown in Table 3.3. Al-

though TTS-oriented pre-training could not ensure complete linguistic consistency, the

errors were minor and possibly due to the imperfect ASR engine used for evaluation,

thus the result seemed reasonable. On the other hand, the recognition result of the

ASR-oriented pre-trained model with 80 utterances had no connection to the source

sentence. It is concluded that linguistic consistency was poorly maintained under the

limited data scenario using ASR-oriented pre-training.

3.4.3 Comparison of RNN and Transformer based models

As an ablation study, the performance of RNN-based and Transformer-based mod-

els was compared by applying TTS-oriented pre-training to both models. Tables 3.1

and 3.2 gave the following observations.

• Without TTS-oriented pre-training, VTNs were less robust to training data re-

duction than RNNs in terms of objective measures but better in terms of sub-
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jective measures. This was possibly because a more complex model like VTN is

capable of generating better-sounding voices while being more prone to overfit-

ting since it lacks attention regularizations such as the location-sensitive location,

as suggested in [101].

• With TTS-oriented pre-training, it could be observed that VTNs outperformed

RNNs in terms of all objective measures except F0RMSE and subjective scores.

This was possibly due to the use of MCD as the model selection criterion.

3.4.4 Visualizing the hidden representation space

In Section 3.2.1, it was hypothesized that applying the TTS-oriented pre-training

technique results in an encoder capable of extracting linguistic-information-rich repre-

sentation. To verify this hypothesis, a visualization experiment was conducted. Specif-

ically,

1. The hidden representations were extracted with the trained encoders using the

validation set from the clb speaker as input.

2. The t-SNE method [107] was used to reduce the dimensionality and visualize the

hidden representations in the two-dimensional space.

3. The phoneme labels that come with the CMU ARCTIC dataset were used as

ground truth, and the 5 most common phonemes and their corresponding hidden

representations were colored to simplify the plots. Note that for encoders with a

reduction factor greater than 1, the corresponding label was decided with majority

voting. For example, if the encoder reduction factor was 4, and the labels of the

four frames that correspond to a hidden representation are ”s”, ”s”, ”s”, ”a”, then

the label of that hidden representation would be set to ”s”.
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The resulting plots were shown in Figure 3.4. It could be observed that compared

to no pre-training, the hidden representation spaces learned from TTS-oriented pre-

training demonstrated a strong degree of clustering effect, where points corresponding

to the same phoneme were close to each other. This tendency was consistent in the

cases of both 932 and 80 training utterances. On the other hand, ASR-oriented pre-

training yielded a much scattered hidden representation space even with 932 training

utterances.

This analysis suggests that the TTS-oriented pre-training technique could result in a

more discretized representation space, which matched the initial assumption. One may

further conclude that by looking together with the objective and subjective results in

Tables 3.1 and 3.2, the degree of clustering effect somehow reflected the goodness of

the hidden representations for seq2seq VC.

3.5 Conclusions

In this chapter, a pre-training technique for addressing the problem of data effi-

ciency in seq2seq VC was proposed. Specifically, a unified, two-stage training strategy

that first pre-trains the decoder and the encoder subsequently followed by initializing

the VC model with the pre-trained model parameters was proposed. ASR and TTS

were chosen as source tasks to transfer knowledge from, and the RNN and VTN ar-

chitectures were implemented. Through objective and subjective evaluations, it was

shown that the TTS-oriented pre-training strategy could greatly improve performance

in terms of speech intelligibility and quality when applied to both RNNs and VTNs, and

the performance could stay without significant degradation even with limited training

data. As for ASR-oriented pre-training, the robustness degraded with the reduction of

training data size. Also, VTNs performed inferior to RNNs without pre-training but
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superior with TTS-oriented pre-training. The visualization experiment suggested that

the TTS-oriented pre-training could learn a linguistic-information-rich hidden repre-

sentation space while the ASR-oriented pre-training lacks such ability, which sheds

light on what an ideal hidden representation space would be like.
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Table 3.1: Validation-set objective evaluation results of VTNs with no pre-training,

TTS-oriented pre-training, ASR-oriented pre-training, and RNN-based models with no

pre-training and TTS-oriented pre-training, which are trained on different conversion

pairs and different sizes of data. Bold font indicates the best performance across the

average scores.

Pair 932 training utterances 250 training utterances 80 training utterances

Model pre-train Src Trg MCD F0RMSE CER WER MCD F0RMSE CER WER MCD F0RMSE CER WER

VTN

None

clb
slt 6.60 24.54 12.4 20.2 7.43 25.37 29.2 42.3 8.23 26.65 65.3 87.6

rms 6.83 24.02 21.4 33.0 7.83 24.86 53.2 73.3 8.68 27.20 71.8 94.8

bdl
slt 7.33 23.36 23.1 33.7 8.31 23.40 52.9 75.9 8.74 24.81 73.9 95.7

rms 7.37 22.68 28.4 43.3 8.30 23.78 56.2 78.4 9.14 24.38 79.0 102.8

Average 7.03 23.65 21.3 32.6 7.97 24.35 47.9 67.5 8.70 25.76 72.5 95.2

TTS

clb
slt 6.02 23.94 5.5 9.1 6.41 24.86 5.2 9.7 6.66 27.24 10.4 14.7

rms 6.22 24.29 6.8 11.9 6.75 24.91 12.8 21.3 6.94 27.86 12.5 22.0

bdl
slt 6.33 22.44 5.0 7.6 6.71 23.24 4.8 8.1 7.07 23.75 9.7 13.6

rms 6.69 22.63 7.3 12.7 7.13 23.32 11.3 18.0 7.39 24.13 17.2 26.2

Average 6.32 23.33 6.2 10.3 6.75 24.08 8.5 14.3 7.02 25.75 12.5 19.1

ASR

clb
slt 6.11 24.03 4.8 10.9 6.84 24.78 15.9 26.0 8.28 27.13 72.1 97.6

rms 6.22 24.15 8.1 16.0 7.08 24.89 27.2 43.2 7.93 26.57 60.2 86.2

bdl
slt 6.50 22.35 5.7 11.1 7.33 23.65 26.1 39.8 8.18 24.23 58.2 80.7

rms 6.68 22.46 9.1 15.6 7.58 23.24 32.9 51.6 8.22 24.25 59.7 82.9

Average 6.38 23.25 6.9 13.4 7.21 24.14 25.5 40.2 8.15 25.55 62.6 86.9

RNN

None

clb
slt 6.77 24.81 7.1 12.1 7.29 25.02 15.4 24.0 7.76 25.04 38.6 56.8

rms 6.80 23.54 11.6 19.7 7.49 24.84 24.7 38.0 7.98 27.67 48.9 68.7

bdl
slt 7.45 23.37 23.4 32.6 8.06 24.53 37.1 54.4 8.44 24.40 65.6 93.8

rms 7.62 23.96 20.0 32.4 8.25 24.32 47.2 90.2 8.52 25.13 59.7 81.5

Average 7.16 23.92 15.5 24.2 7.77 24.68 31.1 51.7 8.18 25.56 53.2 75.2

TTS

clb
slt 6.29 24.62 5.6 10.1 6.63 23.99 7.4 12.7 6.92 26.40 14.0 22.2

rms 6.35 23.58 8.3 16.1 6.88 24.30 17.0 27.7 7.08 26.54 29.0 44.0

bdl
slt 6.74 22.89 8.2 13.9 7.08 23.11 11.3 19.8 7.46 23.60 16.3 23.8

rms 6.97 22.36 15.1 26.3 7.39 23.34 21.1 32.4 7.57 23.30 25.4 39.6

Average 6.59 23.36 9.3 16.6 7.00 23.69 14.2 23.2 7.26 24.96 21.2 32.4
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Table 3.2: Evaluation-set naturalness and similarity subjective evaluation results of

VTNs with no pre-training, TTS pre-training, ASR pre-training, and RNN-based

models with no pre-training and TTS pre-training, which are averaged over all

conversion pairs and different sizes of data.

932 training utterances 80 training utterances

Model pre-training Naturalness Similarity Naturalness Similarity

Analysis-synthesis 4.45 ± 0.14 - - -

VTN

None 3.19 ± 0.23 61% ± 14% 1.96 ± 0.16 44% ± 13%

TTS 4.34 ± 0.15 80% ± 11% 4.11 ± 0.09 68% ± 8%

ASR 4.25 ± 0.16 77% ± 10% 3.38 ± 0.20 53% ± 12%

RNN
None 2.33 ± 0.20 40% ± 12% 1.57 ± 0.14 33% ± 15%

TTS 3.91 ± 0.19 68% ± 13% 3.71 ± 0.09 58% ± 10%

Table 3.3: ASR-based recognition results of VTN converted samples from the

evaluation set of the clb-slt conversion pair. The errors are in uppercase.

Description
Training

data size
Recognition result

Ground truth - the history of the eighteenth century is written ernest prompted

TTS-oriented

pre-training

932 the history of the eighteenth century is written IN IS prompted TO TO

250 the history of the eighteenth century is written IN HIS PROMPTER

80 the history of the eighteenth century is written ON HIS PROMPT

ASR-oriented

pre-training

932 the history of the eighteenth century is written EARNEST prompted

250 the history of the eighteenth CENTURY’S RADIANCE prompted

80 IT DISTURBED the DAY TO HIMSELF TO REJOIN HIM IN NORTH’S LIBRARY
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(a) No pre-training (932) (b) No pre-training (80)

(c) TTS pre-training (932) (d) TTS pre-training (80)

(e) ASR pre-training (932) (f) ASR pre-training (80)

Figure 3.4: Visualizations of hidden representations extracted from VTNs with no pre-

training, TTS-oriented pre-training, and ASR-oriented pre-training. The validation

set from clb was used. The numbers in the parenthesis indicate the number of training

utterances.





4 Self-supervised Pre-training for

Voice Conversion

In this chapter, self-supervised pre-training-based voice conversion (VC) is studied.

The study presented in this chapter is part of a series of scientific activities, which

is an extension of the self-supervised speech pre-training and representation learning

(S3PRL) toolkit and the Speech processing Universal PERformance Benchmark (SU-

PERB). The study carried out in this chapter is a collection of toolkit, benchmark,

and experimental results, which is referred to as S3PRL-VC. With the success of

self-supervised learning (SSL) in other research fields, its application to VC is highly

anticipated.

4.1 Introduction

In recent years, SSL has become the state-of-the-art approach in various research

fields. It implies a principle that first pre-trains an upstream model that learns general

knowledge by solving self-supervised tasks on a large amount of unlabeled data, followed

by fine-tuning prediction layers on various downstream tasks1. An upstream model pre-

trained for speech is called a self-supervised speech representation (S3R) model. These

1In the context of SSL-based VC, the recognizer is represented and the synthesizer are represented

by the self-supervised speech representation upstream model and the downstream prediction layers,

respectively. In the remainder of this paper, we will use these two terms interchangeably.
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S3Rs are expected to capture linguistic, speaker, prosodic, and semantic information

of speech. In the literature, though with different network architectures, S3Rs are

commonly grouped by their objective functions.

• Generative modeling incorporates language model-like training losses to predict

unseen regions (such as future or masked frames) to maximize the likelihood of the

observed data. Examples include APC [108], VQ-APC [109], Mockingjay [110],

TERA [111], and NPC [112].

• Discriminative modeling aims to discriminate (or contrast) the target unseen

frame with randomly sampled ones, which is equivalent to mutual information

maximization. Examples include CPC [113,114], wav2vec [115], vq-wav2vec [116],

wav2vec 2.0 [38] and HuBERT [39].

• Multi-task learning applies multiple objectives, including waveform genera-

tion, prosody features regression, and contrastive InfoMax. PASE+ [117] is the

most representative approach.

As introduced in Section 2.2.2, one can use an S3R model as the recognizer in the

context of recognition-synthesis (rec-syn)-based VC. Such a framework is referred to

as S3R-based VC in this thesis. S3R-based VC can be especially attractive due to

its unique advantages. The first advantage is that it unlocks the amount of training

data that can be used to train the recognizer. For instance, the 960 hours LibriSpeech

dataset [100] is often used to train an automatic speech recognition (ASR) model as the

recognizer in the rec-syn-based VC systems based on text or phonetic posteriorgram

(PPG), as described in Section 2.2.2. In contrast, most S3Rs are benchmarked on the

60k hours LibriLight dataset [118], which is 60 times larger than LibriSpeech. Another

advantage is that it is much easier to collect unlabeled data for atypical speech types,
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such as emotional, accented, or low-resourced languages.

Perhaps the most unique advantage of applying S3R to VC is its use of analyzing S3R

models. Take speaker conversion as an example, from the information perspective of

VC presented in Section 2.2, it is hypothesized that a good intermediate representation

should (1) be rich in content but (2) contain little to none speaker information. As

a result, an S3R model that can extract all-purpose speech representations may not

be an optimal choice for VC. For instance, a well-known S3R, wav2vec 2.0 [38], is

powerful in not only ASR but also speaker and language recognition [119], implying

that it encodes rich content, speaker and language information. Therefore, it may not

be the best representation for VC. Such analyses may help researchers reach a better

understanding of different S3R models.

In this chapter, a comparative study of S3R-based VC is presented. The presented

results are the outcome of the development of S3PRL-VC, [120], an open-source VC

software2 that was previously developed to extend the SUPERB benchmark and the

S3PRL toolkit [121]. A large-scale evaluation, both objectively and subjectively, is

conducted to analyze S3R-based VC systems from various aspects, including:

• Task. Experiments are conducted under three kinds of settings: intra-/cross-

lingual any-to-one (A2O) VC, where the system converts from an unseen speaker

to a seen speaker of the same/different language, and intra-lingual any-to-any

(A2A) VC, where both the source and target speakers are unknown during train-

ing. The voice conversion challenge (VCC) 2020 dataset is used to unify the

dataset condition and to provide a comparison with the top systems in the chal-

lenge.

2Originally the implementation was released as a part of S3PRL: https://github.com/s3prl/

s3prl/tree/master/s3prl/downstream/a2o-vc-vcc2020. Later on, an isolated toolkit was released

at https://github.com/unilight/s3prl-vc.
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• Model type. Models used in the top systems in VCC2018 [89] and VCC2020 [78]

are implemented, which allows comparison with the top systems in the respective

years.

• Multilinguality. The cross-lingual transfer ability of S3Rs is validated using a

cross-lingual VC task. Furthermore, using the wav2vec 2.0 model, performance

when trained on a mono-lingual and a multi-lingual dataset is compared.

• Supervision. Results of supervised representations-based systems using the

same tasks and models are presented to understand the impact of supervision in

recognizer training.

• Discretization. Although continuous features were used as default in the SU-

PERB benchmark, initial investigations showed that they do not provide the

sufficient disentanglement needed in the A2A setting. Therefore, the use of a

discretization technique based on the k-means clustering algorithm used in [81]

is studied, and an extensive is carried out.

This chapter aims to contribute to not only the VC field but also the S3R field. The

contributions to the respective fields are summarized as follows:

• VC: The goal is a unified, comprehensive study of S3R-based VC. Although get-

ting increasingly popular in the VC field in recent years [81–85], each paper used

its own experimental setting, including different datasets, models, and evaluation

protocol. As a result, it is difficult to compare different techniques to further iden-

tify the drawbacks of current methods. Through this study, it is expected that

a more holistic understanding of the S3R-based VC framework can be delivered,

to provide a stepping stone for future VC researchers.
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Table 4.1: Summary of the data conditions in the voice conversion challenge 2020.

Task
Training phase Conversion phase

Source Target Source Converted

Task 1 70 Eng.

utterances

70 Eng.

utterances
25 Eng.

utterances

25 Eng.

utterances

Task 2
70 Man./Ger./Fin.

utterances

• S3R: VC is expected to be a suitable task for investigating the disentanglement

ability of S3R models. Most downstream tasks test one ability of the S3R model

at a time, either the capability to encode rich and compact local content informa-

tion (speech recognition, keyword spotting, etc.) or the power to represent global

characteristics (speaker verification, emotion recognition, etc.) As stated above,

it is expected that VC can test these two abilities at once. Moreover, although

speaker conversion is the main focus of this work, by changing a task setting, it

is possible to inspect the ability of the S3R model to disentangle different global

attributes, such as accent or speaking style.

4.2 Tasks Design

4.2.1 General description of the voice conversion challenge

2020 dataset and tasks

All experiments in this work are based on the VCC2020 dataset [9]. There are two

tasks in VCC2020, both of which are speaker conversion tasks: task 1 is intra-lingual



62 4 Self-supervised Pre-training for Voice Conversion

VC, and task 2 is cross-lingual VC. The data conditions are summarized in Table 4.1.

The two tasks share the same two English male and female source speakers. The target

speakers include two male and two female English speakers for task 1, and one male

and one female speaker each of Finnish, German, and Mandarin for task 2. For each

speaker, 70 utterances (roughly five minutes) in their respective languages and contents

are provided, and there are 25 test sentences for evaluation. During conversion, the

source speech (which is in English) is converted as if it was uttered by the target

speaker while keeping the linguistic contents unchanged.

4.2.2 Intra-lingual and cross-lingual any-to-one VC

The first two tasks considered in this study are intra-lingual and cross-lingual A2O

VC. A2O VC refers to the task of converting any arbitrary speech into that of a pre-

defined target speaker. Such a definition naturally makes rec-syn-based VC a suitable

approach to this task. In the A2O setting, the training utterances of the source speak-

ers in Table 4.1 are not used, and only the target training utterances are used as the

VC training dataset in Figure 2.6. As described in Secion 4.2.1, the language of the

target training dataset is English and Finnish/German/Mandarin in the intra-lingual

and cross-lingual settings, respectively.

A2O VC is a good probing task to investigate several characteristics of an upstream

S3R model. A fundamental requirement of VC is linguistic consistency, so it is believed

that there is a positive correlation between the VC performance of an S3R model and its

ability to faithfully encode the spoken contents. Also, during the synthesizer training in

cross-lingual VC, the S3R model may fail to generalize to non-English target speakers

since most existing S3R models are trained with English datasets only. It is worthwhile

to examine the ability of mono-lingual S3R models to transfer to different languages.
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4.2.3 Intra-lingual any-to-any VC

The third task is A2A VC with the VCC2020 dataset. A2A VC is also known as

one-shot VC3, which attempts to convert to a target speaker whose training set is so

limited (often less than one minute), such that fine-tuning is infeasible.

Certain modifications need to be made to adapt the training framework illustrated

in Figure 2.6 for A2A VC. Since S3Rs are speaker-independent, they cannot provide

the essential information to recover the speaker identity for reconstruction. Thus, in

the A2A setting, the input to the synthesizer is augmented with a speaker embedding

extracted by an off-the-shelf speaker encoder, which is pre-trained on an automatic

speaker verification (ASV) dataset and objective. In training, the speaker embedding

extracted from the target waveform is used. During conversion, given a small set of

utterances of the target speaker, the speaker embedding is formed as an average of

each embedding from each utterance. We may then rewrite Eq. 2.17 as:

Y = Synth(H, s),H = Recog(X), s = SpkEnc(Dtrg), (4.1)

where s is the speaker embedding. In practice, a separate multi-speaker dataset is used

to train the synthesizer, such that it learns to generalize to new speakers at test time.

A2A VC is considered more difficult than A2O VC. The reason is that during syn-

thesizer training, the speaker identity that the model tries to reconstruct is drawn

randomly from the multi-speaker dataset, instead of always reconstructing the same

target speaker as in the training of a synthesizer in A2O VC. In such a scenario, a

3The term “zero-shot VC” was recently used in some widely cited VC papers [63,122]. However, the

term “zero-shot” has been mostly used in machine learning and refers to the ability to adapt to unseen

classes in discriminative tasks. It is thus questionable whether such a term matches the condition

in generative tasks since it is impossible to generate a certain class without knowing anything about

that class. For instance, if one wants to synthesize the voice of a certain speaker, certain information

must be given. The author finds “one-shot” to be a more suitable choice, as in [70].
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“speaker-information-free” S3R will be more demanding.

4.3 Implementations

4.3.1 Recognizers (upstream models)

Table 4.2 depicts the list of S3Rs we compared in this work, which are the upstream

models supported in S3PRL as of August 2021. For a complete list of information

(training data, architecture, objective, etc.), please refer to [121]. All upstreams are

trained with English data, mostly LibriSpeech [100] or LibriLight [118]. In addition

to the S3Rs, two extra upstreams were included: (1) mel-spectrogram, “mel”, and (2)

“PPG (TIMIT)”, which is trained supervisedly on the TIMIT dataset [123].

4.3.2 Synthesizer models

As illustrated in Figure 4.1, the following models are implemented to resemble top

systems of past VCCs:

• Simple: The first model resembles the top system in VCC2018 [89]. The simple

model consists of a single-layer feed-forward network (FFN), two long short-term

memory layers with projection (LSTMP), and a linear projection layer.

• Simple-AR: As autoregressive (AR) modeling has been shown to be effective

in speech synthesis [124], an AR loop is added to the simple model. At each

time step, the previous output is consumed by the first LSTMP layer. Dropout

is essential in the AR loop to avoid exposure bias brought by teacher-forcing

[41,125].
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FFN+ReLU

LSTMP

Linear

LSTMP

Upstream features

Log mel fbanks

Conv1d + BN + 
ReLU + Dropout x3

BLSTM

Upstream features
Encoder

LSTMP

Linear

Dropout

AR loop

LSTMP

Decoder

Log mel fbanks

Upstream features
Encoder

FFN+ReLU

simple simple-AR Taco2-AR

LSTMP

Linear
FFN + 

Dropout

Prenet
AR loop

LSTMP x2

Decoder

Log mel fbanks

d-vector

Figure 4.1: The synthesizer models implemented in this study. Left: the simple model.

Middle: the simple model with an auto-regressive loop. Right: the Tacotron2 model,

with extension to an any-to-any model by accepting a d-vector as the speaker embedding.

• Taco2-AR: Finally, a model architecture similar to that of Tacotron 2 [42] is

implemented, which resembles the model used by the top system in VCC2020 [78].

Different from Tacotron 2, the attention module was not used as it was reported

to be not necessary [78].

The transformer architecture is not used because (1) fast benchmarking is a key require-

ment of SUPERB/S3PRL, and (2) using the frame-level feature used in the S3R-based

framework does not require changing the temporal structure. To unify the acoustic

feature to reconstruct, the log mel-spectrogram is used. The input of the synthesizer

can be either the raw continuous S3R, or discretized with embedded vectors as will be

described in Section 4.3.3.
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Figure 4.2: Left: the post-discretization process overview. Top right: the cluster ensem-

ble technique with three k-means models using different numbers of clusters. Bottom

right: the product quantization techniques with four partitions.

4.3.3 Post-discretization process for any-to-any VC

As will be discussed later (and shown in Table 4.2), using continuous features cannot

satisfy the disentanglement requirement in the A2A scenario. As a result, most S3Rs

fail to convert the speaker identity, as will be shown in later sections. This makes A2A

not a suitable task for benchmarking S3Rs since most of the S3Rs perform similarly

badly.

In light of this, the post-discretization process proposed in [81] is adopted with the

motivation to impose a stronger information bottleneck. Specifically, as illustrated

in the left of Figure 4.2, the k-means clustering algorithm takes the continuous fea-

tures returned by the recognizer, and returns corresponding discrete indices Z using a

codebook of size K. The k-means model is trained with a separate dataset in advance.

However, such a discretization technique performs poorly when naively applied to
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certain S3Rs. The generated speech often suffers from poor intelligibility, even when

using a large codebook. It is suspected that the information bottleneck introduced by

discretization is too strong. To offer more expressive power, inspired by [39], the follow-

ing two additional techniques are applied. The right of Figure 4.2 shows such a process.

In particular, both methods try to describe one feature vector with multiple k-means

models (i.e., multiple indices) to increase the degree of freedom. In the experimental

section, a complete investigation of these two techniques will be presented.

Cluster ensemble

Using an ensemble of k-means models with different codebook sizes can capture

different granularity, and each k-means model can provide complementary information

to back each other up. Specifically, given hi, a continuous feature vector, NCE k-means

models are used to generateNCE indices: [z1i, z2i, . . . , zNCEi], where the codebook of n-th

model has sizeKn clusters. EachKn should be set to different numbers so that different

k-means models can learn to capture different levels of detail. The hyperparameter

NCE can be tuned for each S3R, and an ablation study on this hyperparameter will be

presented in Section 4.4.7

Product quantization

Product quantization (PQ) is a technique where the feature space is partitioned into

multiple subspaces, and each subspace is quantized separately using different k-means

models. Specifically, given a continuous feature vector hi ∈ Rd, it is first partitioned

into NPQ subvectors: [h1i, h2i, . . . , hNPQi] where each subvector has size hni ∈ Rd/NPQ .

Then, each subvector is consumed by a separate k-means model to generate NPQ in-

dices: [z1i, z2i, . . . , zNPQi]. The k-means models can be of different numbers of clusters
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as done in cluster ensemble, but for simplicity, here all k-means models are set to have

an equal number of clusters. Similar to NCE, one can also tune NPQ for each S3R, and

an ablation study on this hyperparameter will be presented in Section 4.4.7

4.3.4 Other implementation setups

Any-to-any VC settings

The dataset used to train the A2A VC model is the VCTK dataset [11]. For the

speaker encoder, the d-vector model [95] is used and trained on a mix of datasets,

including LibriSpeech, VoxCeleb 1 [126] and 2 [127]. For the post-discretization process,

following [81], all k-means models are trained on the LibriSpeech clean-100h set [100].

Although some studies use intermediate layer outputs for discretization [81, 128], for

simplicity, the last output for all S3R models is used.

Waveform synthesizer

HiFi-GAN [129], a state-of-the-art parallel real-time neural vocoder, is used to gen-

erate the final waveform from the generated mel spectrogram. For the A2O setup, the

training utterances of all 14 speakers in VCC2020 and the VCTK dataset are used,

while for the A2A setup, only the VCTK dataset is used.

4.4 Experimental evaluation results

In this section, a series of complete objective evaluations and a large-scale listening

test are reported to analyze continuous feature-based S3R-based VC and to compare

with state-of-the-art systems (Section 4.4.4). The investigated aspects include the
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synthesizer model type (Section 4.4.2), multilinguality (Section 4.4.3), and supervision

(Section 4.4.5). Finally, the effectiveness of the post-discretization process is examined

(Sections 4.4.7 and 4.4.8).

4.4.1 Evaluation metrics and protocols

For objective measures, the MCD, WER, and ASV metrics described in Section 2.3

are reported. The ASR engine for calculating WER is a pretrained wav2vec 2.0 model4.

For the cross-lingual A2O task, the MCD numbers are not reported due to the absence

of ground truth reference.

For the subjective test, naturalness and similarity are evaluated, as described in

Section 2.3. 80 utterances (5 random × 16 conversion pairs) were evaluated for each

system. Recordings of the target speakers were also included in the naturalness test and

served as the upper bound. An open-source toolkit [105] that implemented the ITU-T

Recommendation P.808 [106] was used to screen unreliable ratings obtained through

Amazon Mechanical Turk (Mturk). More than 280 listeners from the United States

were recruited, and each sample was rated by five different participants on average.

Audio samples are available online5.

4.4.2 Comparison of different synthesizer model types

As a start, the impact of using different synthesizer models described in Section 4.3.2

in the intra-lingual A2O setting is investigated, as shown in Table 4.2. First, only by

adding the AR loop to the Simple model, most S3Rs benefit from large improvements

4Performance and APIs can be found at https://huggingface.co/facebook/

wav2vec2-large-960h-lv60-self
5https://unilight.github.io/Publication-Demos/publications/s3prl-vc/
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Table 4.2: Objective evaluation results on intra-lingual any-to-one voice conversion

over various continuous self-supervised speech representations. For MCD and WER,

the smaller the better; for ASV, the higher the better.

Upstream

Intra-lingual A2O

Simple Simple-AR Taco2-AR

MCD WER ASV MCD WER ASV MCD WER ASV

mel 8.41 48.5 59.00 8.92 22.7 49.75 8.47 38.3 77.25

PPG (TIMIT) 7.78 69.0 85.50 7.83 58.9 95.25 7.18 33.6 99.75

PASE+ [117] 9.29 5.0 26.75 9.52 5.7 26.00 8.66 30.6 63.20

APC [108] 8.67 8.6 48.00 8.73 7.1 41.75 8.05 27.2 87.25

VQ-APC [109] 8.12 10.8 81.25 8.37 7.4 60.50 7.84 22.4 94.25

NPC [108] 7.74 39.0 92.75 8.15 21.1 76.75 7.86 30.4 94.75

Mockingjay [110] 8.58 31.3 51.00 8.74 9.5 47.00 8.29 35.1 79.75

TERA [111] 8.60 11.4 46.50 8.67 6.0 42.50 8.21 25.1 83.75

Modified CPC [114] 8.71 9.4 40.00 8.87 7.0 30.00 8.41 26.2 71.00

DeCoAR 2.0 [130] 8.31 7.4 54.75 8.33 6.4 53.00 7.83 17.1 90.75

wav2vec [115] 7.45 14.0 95.50 7.64 4.9 90.50 7.45 10.1 98.25

vq-wav2vec [116] 7.41 13.4 91.00 7.24 11.6 98.75 7.08 13.4 100.00

wav2vec 2.0 Base [38] 7.80 24.7 92.75 7.77 5.0 86.50 7.50 10.5 98.00

wav2vec 2.0 Large 7.64 12.5 81.75 7.67 9.0 82.75 7.63 15.8 97.25

HuBERT Base [39] 7.70 5.5 89.25 7.79 4.7 84.25 7.47 8.0 98.50

HuBERT Large 7.54 5.6 95.00 7.54 5.6 93.00 7.22 9.0 99.25

in WER. With Taco2-AR, all S3Rs except PASE+ and modified CPC achieved an ASV

accept rate higher than 80%, while all S3Rs suffered from a degradation in WER. This

shows that increasing the model capacity can significantly improve speaker similarity

while sacrificing intelligibility.

However, it should be noted that: (1) the WER is a strict measurement of intelligi-

bility, and humans can recognize better than machines. After listening to the samples,

the internal perception was that compared to simple-AR, the quality was greatly im-
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proved, and intelligibility degradation was not as serious as shown in the table. (2) the

Taco2-AR model yields the best MCD scores, which, as will be shown later, correlates

better with subjective naturalness and similarity. (3) although the Taco2-AR is con-

sidered the most complicated, it was found empirically that the training times of the

three models are similar. Based on these reasons, the Taco2-AR model is used for the

succeeding tasks and comparisons.

Table 4.3: Objective evaluation results on cross-lingual any-to-one and intra-

lingual any-to-any voice conversion over various continuous self-supervised speech

representations. For MCD and WER, the smaller the better; for ASV, the higher the

better.

Upstream

Cross-lingual A2O Intra-lingual A2A

Taco2-AR Taco2-AR

WER ASV MCD WER ASV

mel 39.0 46.67 9.49 4.2 19.50

PPG (TIMIT) 51.0 84.67 8.31 12.9 83.50

PASE+ [117] 36.3 34.67 9.85 4.2 8.00

APC [108] 33.9 52.33 9.57 3.5 23.25

VQ-APC [109] 28.4 68.00 9.43 4.0 22.00

NPC [108] 37.6 59.00 9.39 4.4 21.00

Mockingjay [110] 39.2 46.00 9.43 5.0 25.00

TERA [111] 29.2 49.33 9.31 5.2 18.75

Modified CPC [114] 35.3 32.83 9.61 4.1 10.75

DeCoAR 2.0 [130] 26.8 59.33 9.28 4.0 27.00

wav2vec [115] 13.9 75.83 8.77 3.5 40.00

vq-wav2vec [116] 21.0 88.83 8.47 4.2 73.25

wav2vec 2.0 Base [38] 14.9 82.17 9.03 3.2 27.00

wav2vec 2.0 Large 22.7 78.00 8.99 4.1 22.25

HuBERT Base [39] 13.5 82.33 9.19 3.4 23.25

HuBERT Large 15.9 86.50 9.13 3.0 27.75
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Table 4.4: Comparison of wav2vec 2.0 trained on mono-lingual data and cross-lingual

data in the cross-lingual any-to-one voice conversion scenario, using the Taco2-AR

model. The results of wav2vec 2.0 Large are extracted from Table 4.3.

Upstream Training data size WER ASV

wav2vec 2.0 Large LibriLight 60k hr 22.7 78.00

XLSR [131] 56k hr from 53 languages 24.2 72.50

4.4.3 Investigation on model multilinguality

Next, Table 4.3 shows the VC performance of S3R models in the cross-lingual setting.

First, S3Rs trained on a mono-lingual corpus can still work well in the cross-lingual

setting, demonstrating their ability to transfer across languages. However, compared

with the intra-lingual A2O task, it could be observed that all S3Rs degraded in terms

of both the WER and ASV accept rate in the cross-lingual setting. In VCC2020, it

was also reported that cross-lingual VC is indeed a harder task than intra-lingual VC,

as the listening test results of all participating teams were much worse.

To further investigate the impact of the training data language, results are carried

out on XLSR [131], a model that has the same architecture as wav2vec 2.0 Large but

trained on a mixture of datasets from 53 languages, resulting in 56k hours of data.

From Table 4.4, it can be found that compared to wav2vec 2.0 Large trained on mono-

lingual data, XLSR was not particularly good. One potential reason is that when the

training set is large enough, the model can already capture the variations among all

languages such that a multilingual dataset will not be needed. Also, since the source

language during conversion is English, monolingual models may be sufficient. It is

worthwhile investigating this point by considering a different setting in the future,

such as converting from non-English languages.
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Table 4.5: Comparison of S3R-based systems and state-of-the-art systems in the any-

to-one setting. All upstreams use the Taco2-AR model. Nat. and Sim. stand for

naturalness and similarity, respectively. Both Nat. and Sim. are the higher the better.

The objective results (MCD, WER, ASV) are extracted from Table 4.2.

System MCD WER ASV Nat. Sim.

Intra-lingual A2O

mel 8.47 38.3 77.25 2.61 ± .11 35% ± 3%

PPG (TIMIT) 7.18 33.6 99.75 3.32 ± .10 58% ± 4%

PASE+ 8.66 30.6 63.20 2.58 ± .12 31% ± 3%

APC 8.05 27.2 87.25 2.92 ± .11 43% ± 4%

VQ-APC 7.84 22.4 94.25 3.08 ± .10 40% ± 4%

NPC 7.86 30.4 94.75 2.98 ± .11 46% ± 3%

Mockingjay 8.29 35.1 79.75 2.81 ± .12 42% ± 4%

TERA 8.21 25.1 83.75 2.91 ± .12 37% ± 4%

Modified CPC 8.41 26.2 71.00 2.74 ± .11 33% ± 3%

DeCoAR 2.0 7.83 17.1 90.75 3.04 ± .11 43% ± 4%

wav2vec 7.45 10.1 98.25 3.40 ± .05 52% ± 2%

vq-wav2vec 7.08 13.4 100.00 3.59 ± .10 59% ± 4%

wav2vec 2.0 B. 7.50 10.5 98.00 3.36 ± .06 51% ± 2%

wav2vec 2.0 L. 7.63 15.8 97.25 3.26 ± .10 50% ± 4%

HuBERT B. 7.47 8.0 98.50 3.48 ± .10 55% ± 4%

HuBERT L. 7.22 9.0 99.25 3.47 ± .10 54% ± 4%

USTC-2018† [89] – 6.5 99.00 4.20 ± .08 55% ± 4%

USTC-2020 [77] 6.98 5.4 100.00 4.41 ± .07 82% ± 3%

SRCB [80] 8.90 11.5 92.00 4.16 ± .08 68% ± 3%

CASIA [79] 7.13 11.0 98.25 4.25 ± .08 61% ± 4%

ASR+TTS [76] 6.48 8.2 100.00 3.84 ± .09 75% ± 3%

Target – 0.7 – 4.57 ± 0.14 –

4.4.4 Comparing with state-of-the-art systems using subjec-

tive evaluation

This subsection presents a comparison of S3R-based VC models with state-of-the-

art VC systems in VCC2020. USTC-2018 [89], USTC-2020 [77, 78]6, SRCB [80],

CASIA [79] were top systems in VCC2020, all of which adopted PPGs, synthesizer

6USTC’s systems used text and PPG for the intra-lingual and cross-lingual tasks, respectively.
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Table 4.6: Comparison of S3R-based systems and state-of-the-art systems in the cross

lingual any-to-one and intra-lingual any-to-any settings. All upstreams use the

Taco2-AR model. Nat. and Sim. stand for naturalness and similarity, respectively.

Both Nat. and Sim. are the higher the better. The objective results (MCD, WER,

ASV) are extracted from Table 4.3.

System MCD WER ASV Nat. Sim.

Cross-lingual A2O

PPG (TIMIT) – 51.0 84.67 2.79 ± .08 43% ± 3%

vq-wav2vec – 21.0 88.83 3.28 ± .08 44% ± 3%

HuBERT L. – 15.9 86.50 3.13 ± .08 41% ± 3%

USTC-2018 [89] – 5.6 97.67 4.17 ± .06 34% ± 3%

USTC-2020 [78] – 7.6 96.00 4.27 ± .07 43% ± 3%

SRCB [80] – 8.6 78.67 4.34 ± .07 34% ± 3%

CASIA [79] – 10.5 91.67 4.11 ± .07 45% ± 3%

ASR+TTS [76] – 34.5 67.83 2.51 ± .08 39% ± 3%

Target – – – 4.48 ± 0.12 –

Intra-lingual A2A

PPG (TIMIT) 8.32 12.7 84.25 3.41 ± .08 34% ± 4%

vq-wav2vec 8.47 4.2 73.25 3.58 ± .09 28% ± 3%

S2VC† [84] – 12.4 71.50 2.90 ± .09 29% ± 3%

†: Systems generate 16kHz, so MCD is not calculable and direct score

comparison should be made with caution.

pretraining on a multi-speaker dataset, and AR vocoders. Notably, they used thousands

of hours of internal data for training. ASR+TTS [76] was the seq2seq+non-AR

vocoder baseline in VCC2020. S2VC [84] is the STOA system for A2A VC.

The results are shown in Tables 4.5 and 4.6, and a summary of the observations are

as follows:

• vq-wav2vec outperformed all other upstreams in the subjective test, with a 3.59

naturalness and 59% similarity in the intra-lingual A2O setting.

• In the A2O settings, there was still a naturalness gap between vq-wav2vec and
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other VCC2020 top systems (3.59 v.s. 4.16-4.25, 3.28 v.s. 4.11-4.34). As for

similarity, vq-wav2vec was on par with USTC-2018 and CASIA in the intra-

lingual A2O setting and achieved top in the cross-lingual setting.

• In the A2A setting, vq-wav2vec was on par with S2VC in similarity, while be-

ing significantly better in naturalness. The system presented in this chapter is

therefore the new state-of-the-art in S3R-based A2A VC.

4.4.5 Impact of supervision

Although top systems using PPG greatly outperformed vq-wav2vec in naturalness,

they used AR vocoders, and the system was trained on large internal datasets, so the

impact of supervision is not yet clear. To this end, a comparison is made with the

vq-wav2vec result with “PPG (TIMIT)” and the same vocoder.

From Tables 4.5 and 4.6, it is first found that “PPG (TIMIT)” has a high WER

and a low naturalness score, showing that it was indeed of low quality. Nonetheless, in

all three settings, “PPG (TIMIT)” can achieve similar or higher similarity scores than

vq-wav2vec. This shows that supervision greatly contributes to similarity, especially

in a difficult setting like A2A VC. This also shows that the ability of current S3Rs

to disentangle speaker information is still limited when compared to PPG, and can be

further improved in the future. That being said, good performance can still be achieved

without supervision if the S3R is designed properly.

4.4.6 Justify the objective metrics with correlation analysis

Conducting a subjective test whenever a new S3R is developed cannot meet the

fast benchmark requirement of SUPERB. Therefore, it is necessary to examine if the
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Table 4.7: Linear correlation coefficients between different metrics.

Metric MCD WER ASV Nat. Sim.

MCD – 0.678 -0.934 -0.968 -0.961

WER – – -0.640 -0.808 -0.587

ASV – – – 0.910 0.911

Nat. – – – – 0.932

Sim. – – – – –

objective measures align well with human perception. Table 4.7 shows the pairwise lin-

ear correlation coefficients calculated using the intra-lingual A2O results over different

upstream. It could be found that MCD is more aligned with the subjective scores in

terms of both naturalness and similarity than all other metrics.

Note that in this correlation analysis, all systems used the same synthesizer and

neural vocoder. Since the correlation result is strongly affected by the pool of methods

evaluated in a listening test, this good correlation could be observed only in such a

homogeneous condition. That is to say, as long as the synthesizer and the vocoder are

the same, it is safe to use the objective measures to compare different upstreams. This

implication is very useful for the benchmarking requirement of SUPERB.

4.4.7 Investigation of the post-discretization process

As mentioned in Section 4.3.3, the results in Table 4.3 suggest that using continuous

S3Rs in the A2A setting makes it difficult to properly evaluate the S3Rs, since all S3R

models performed badly. Therefore, in this subsection, the focus is to examine whether

the discretization process described in Section 4.2 can alleviate this problem.
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Table 4.8: Results of HuBERT Base and Mockingjay using the cluster ensemble and the

product quantization techniques in the any-to-any scenario, with the Taco2-AR model.

The best numbers within the same upstream are in boldface.

Upstream # clusters (Kn) NPQ MCD WER ASV

HuBERT Base

50

1

8.41 22.0 79.50

100 8.25 10.3 83.50

200 8.32 10.2 84.25

50+100 8.37 10.2 86.25

50+200 8.28 8.6 84.25

100+200 8.29 8.8 83.25

50+100+200 8.40 7.9 85.00

50

2

8.37 12.7 84.50

100 8.23 8.2 86.25

200 8.32 7.2 81.75

Mockingjay

100

1

9.12 77.4 63.00

200 9.10 73.1 63.25

50+100+200 9.02 59.7 61.00

100
2

9.07 64.5 59.00

200 8.95 55.4 61.75

Table 4.8 reports the results of applying cluster ensemble and PQ on two upstreams,

namely HuBERT Base and Mockingjay, in the A2A setting. First, the intelligibility

(WER) improves when the number of k-means models in the ensemble increases. That

is to say, using two k-means models is better than using one, and using three is even

better. The intelligibility is also improved when using PQ, and the improvement is
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Figure 4.3: Visualizing the effect of the number of partitions. Top: HuBERT Base.

Bottom: Mockingjay.

consistent across all numbers of clusters. However, using more k-means models in both

cluster ensemble and PQ means loosening the speaker information bottleneck, which

can harm the conversion similarity (ASV) as well as MCD. Finally, an interesting

finding is that by only partitioning into two feature subvectors, the MCD and WER

are still better than using an ensemble of three k-means models, suggesting that PQ

is a more effective method than cluster ensemble. This is consistent with the finding

in [39]. We thus use PQ in the following experiments.

Based on the observations in Table 4.8, the amount of speaker information leaked

when the number of partitions increases is then studied. Table 4.9 shows the results
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Table 4.9: Results of HuBERT Base and Mockingjay varying the number of partitions

(NPQ) in the product quantization technique. The number of clusters is set to 200 in

all k-means models. The task is any-to-any voice conversion, and the model is the

Taco2-AR model.

Upstream NPQ MCD WER ASV

HuBERT Base

1 8.32 10.2 84.25

2 8.32 7.2 81.75

4 8.39 5.8 84.00

8 8.35 3.5 84.50

16 8.31 4.1 78.00

32 8.41 3.6 75.00

64 8.45 3.8 75.25

128 8.38 3.9 74.00

256 8.37 4.2 74.75

Mockingjay

1 9.10 73.1 63.25

2 8.95 55.4 61.75

4 9.09 37.8 52.50

8 9.14 20.2 39.25

16 9.25 12.8 34.75

32 9.37 8.6 29.75

when varying the number of partitions using HuBERT and Mockingjay, and Figure 4.3

is a visualization of the overall trend.

For HuBERT Base, a diminishing returns effect in WER can be observed. That is

to say, the WER stops to improve when NPQ is large enough. The conversion accuracy
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also stays at a similar level when NPQ is small and starts to drop when NPQ gets

larger. These observations show that one can find an optimal NPQ such that the WER

is optimized while maintaining a similar level of conversion accuracy. However, for

Mockingjay, both WER and ASV are monotonically decreasing, which means that

such an optimal point cannot be found by only looking at these two metrics. As a

result, MCD is used to find the optimal NPQ.

Table 4.10: Results on any-to-any voice conversion with continuous and discrete fea-

tures over various upstreams. The results using continuous features are extracted from

Table 4.3.

Upstream
Continuous Discrete

MCD WER ASV MCD WER ASV

PASE+ 9.85 4.2 8.00 8.92 81.7 74.00

APC 9.57 3.5 23.25 8.66 22.4 81.25

VQ-APC 9.43 4.0 22.00 8.42 21.0 85.50

NPC 9.39 4.4 21.00 8.78 46.0 74.50

Mockingjay 9.43 5.0 25.00 8.95 55.4 61.75

TERA 9.31 5.2 18.75 8.40 37.1 67.00

Modified CPC 9.61 4.1 10.75 8.69 13.8 75.50

DeCoAR 2.0 9.28 4.0 27.00 – – –†
wav2vec 8.77 3.5 40.00 8.34 15.2 86.50

vq-wav2vec 8.47 4.2 73.25 8.49 22.5 82.50

wav2vec 2.0 B. 9.03 3.2 27.00 8.90 54.3 75.75

wav2vec 2.0 L. 8.99 4.1 22.25 8.97 67.7 72.75

HuBERT B. 9.19 3.4 23.25 8.31 4.1 78.00

HuBERT L. 9.13 3.0 27.75 8.23 7.4 86.25

†: Fails to be trained.
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4.4.8 Comparison of continuous and discrete features

Finally, we compare the results in the A2A setting when using continuous and dis-

crete features. Since there are too many hyperparameters that can be tuned, the PQ

technique is always applied and the number of clusters is set to 200. The best NPQ

between 1, 2, and 4 is searched using MCD.

Table 4.10 shows the results. It can be observed that the post-discretization process

indeed serves as a strong speaker information bottleneck as the ASV scores of all S3Rs

are significantly higher than the continuous counterpart. As described in Section 4.3.3,

most S3Rs suffer from poor intelligibility even with the PQ technique. However, certain

S3Rs still achieved an acceptable balance of intelligibility and conversion similarity,

resulting in MCD values lower than that of the best performing continuous S3R (8.47

from vq-wav2vec), such as VQ-APC, wav2vec, HuBERT Base and HuBERT Large.

4.5 Discussion and conclusion

This chapter presented a comparative study of S3R-based VC. All experiments were

based on S3PRL-VC, an extension of the S3PRL toolkit that focuses on the VC down-

stream task. The S3Rs were evaluated under the context of VC, and a series of in-depth

analyses were carried out in various aspects including the synthesizer model type, dif-

ferent VC tasks, supervision, and discretization. The S3R-based systems were also

compared with the state-of-the-art VC systems in VCC2020, and it was shown that

there is still room for improvement in terms of quality and similarity.

Readers from different research communities can gain individual insights from this

work. From the VC perspective, in S3PRL-VC, to meet the fast benchmarking re-

quirement, some techniques that were shown to be effective were not applied, such as



82 4 Self-supervised Pre-training for Voice Conversion

fine-tuning target speaker-dependent vocoders [89, 132], training the synthesizer with

waveform domain losses [81,133], or fine-tuning the vocoder with ground truth aligned

synthesis [42, 129, 134]. That is to say, the performance can be further optimized. In

addition, applications to other VC tasks such as emotional VC, expressive VC, singing

VC, and VC for speaking aid devices are also worth investigating.

From the S3R perspective, certain challenges are required by VC, such as the preser-

vation of the spoken contents and the disentanglement of speaker information. It is

therefore worthwhile to continue to use VC as a probing task when designing new S3R

models.

Finally, it is worthwhile noting that VC has a special position in the context of

the recent SUPERB [135] activities. SUPERB is a collection of benchmark resources

that aims to evaluate S3Rs across various speech tasks, with an assumption in mind

that different representations should outperform others in different tasks due to their

pretext-task nature. However, in the original version which consisted of only 10 dis-

criminative tasks, it turned out that wav2vec 2.0 and HuBERT outperformed all other

S3Rs. This dominance was broken after the introduction of VC, where vq-wav2vec was

shown to be the best in the A2O setting, due to its disentangling ability.

This finding has several important implications. First, it shows that VC can be

used to examine the disentanglement performance of an S3R, and there is a need for

disentanglement if one tries to develop a universal representation, which not yet exist.

Also, it is expected that this work serves as a good initiative for future S3R researchers

to emphasize the disentanglement performance of their model, without hurting the

scores on other tasks like ASR and ASV. This could have a bigger impact on the

community compared to pursuing incremental improvements on other tasks.
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5 Ground-truth-free Application 1:

Dysarthric Voice Conversion

In Chapter 3, a pre-training method for parallel voice conversion (VC) was proposed

to tackle the problem described in Section 1.2.1, and in Chapter 4, self-supervised

speech representation-based non-parallel VC was studied to address the problem de-

scribed in Section 1.2.2. In the following two chapters, the focus is turned to the third

problem as described in Section 1.2.3, which is to approach certain VC applications

where the ground truth target for training is unavailable. In this chapter, a case study

is conducted on the task of dysarthric VC.

5.1 Introduction

Dysarthria refers to a type of speech disorder caused by disruptions in the neuro-

motor interface such as cerebral palsy or amyotrophic lateral sclerosis [136]. Dysarthria

patients lack normal control of the primary vocal articulators, resulting in abnormal

and unintelligible speech with phoneme loss, unstable prosody, and imprecise articula-

tion. Such a type of speech is referred to as dysarthric speech.

VC can be applied to improve the quality of life (QoL) of dysarthric patients by ap-

plying VC in two directions: dysarthric-to-normal (D2N) VC, and normal-to-dysarthric

(N2D) VC. Figure 5.1 is an illustration. In the next two subsections (Sections 5.1.1
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Figure 5.1: Illustration of the dysarthric-to-normal and normal-to-dysarthric voice con-

version.

and 5.1.2), the importance of the respective directions as well as a brief literature re-

view will be presented. An important property of these two tasks is source speaker

identity preservation, and will be described in Section 5.1.3.

5.1.1 Dysarthric-to-normal voice conversion

D2N VC is needed because the ability of dysarthric patients to communicate with

speech in everyday life is degraded. It is of urgent need to improve the intelligibility of

the distorted dysarthric speech1.

There have been several studies on D2N VC. Rule-based transformation based on

signal processing [137] is limited in that each patient needs to be individually consid-

ered. Statistical approaches adopt models ranging from Gaussian mixture models [138],

exemplar-based methods [139, 140] and deep neural networks [141–143]. However, as

mentioned earlier, most of these methods did not take into consideration source speaker

1In the field of VC, orthogonal descriptions such as “naturalness” and “intelligibility” are often

used, but the term “quality” is used interchangeably in this thesis.
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identity preservation, which will be discussed in Section 5.1.3.

5.1.2 Normal-to-dysarthric voice conversion

On the other hand, N2D VC refers to the task of converting normal speech to

dysarthric speech. A straightforward application is to improve automatic speech recog-

nition (ASR) models against pathological speech by augmenting the training dataset

with additional pathological data. Such augmentation could ease the low-resource con-

straints of a pathological ASR task. Previous works mainly employed frame-based VC

models to convert the speech timbre, combined with extra procedures such as speed

perturbation or dynamic time warping to modify the temporal structure and speaking

rate [144,145]. These methods have shown promising improvements in ASR word error

rates.

However, another important application that this chapter focuses on is informed

decision-making related to the medical conditions at the root of speech pathology. For

instance, an oral cancer surgery results in changes to a speaker’s voice. The availability

of a VC model that can generate how the voice could sound after surgery could help

the patients and clinicians make informed decisions about the surgery and alleviate the

stress of the patients.

So far, very few previous works have focused on VC for clinical usage. The first N2D

VC system was presented in [146], which was a combination of a CycleGAN-based

frame-wise VC model and a PSOLA-based speech rate modification process. However,

this method suffers from audible vocoder artifacts brought by the extra PSOLA op-

eration, and the inability to preserve the speaker identity of the control speaker. A

different work [147] focused on dysarthric-to-dysarthric VC, by using a frame-wise VC

model called HL-VQ-VAE [148]. However, the setup was not flexible in that (1) a
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Figure 5.2: Illustration of the common problem of the absence of ground truth training

target in dysarthric-to-normal (left) and normal-to-dysarthric (right) voice conversion.

severity-matched VC setup was required to avoid the need for varying speech rates,

and (2) the method required a pathological source utterance, wherein real-world ap-

plications one might want to synthesize an arbitrary utterance from the normal source

speaker.

5.1.3 Problem: absence of ground truth training target

Source speaker identity preservation is an important requirement for both D2N and

N2D VC. Figure 5.2 provides an illustration. In D2N VC, given a speech utterance

of the source patient with low naturalness and intelligibility, the goal is to synthesize

the highly natural and intelligible counterpart while maintaining the speaker identity

of the patient. Similarly, the goal of N2D VC is to simulate the dysarthric version of

the source normal speaker’s speech.

A common problem of these two directions is the absence of ground truth train-

ing target, illustrated as the blue squares in Figure 5.2. At a given time, collecting
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a normal speech dataset of the patient is impossible. Or one should say, if such a

collection process is possible, then this VC technique will not be needed anyway. The

same logic applies to N2D VC.

As a start, one may try to apply the two representative VC techniques described in

Chapter 2. However, neither the sequence-to-sequence (seq2seq) parallel VC approach

nor the frame-based non-parallel VC method can solve the above-mentioned problem

alone. For seq2seq VC models, a parallel training dataset is required, which is impos-

sible to collect. On the other hand, frame-based VC will not be sufficient because of

the frame-based conversion property. The inability of the frame-based VC framework

to convert prosody is fatal because many unique attributes of dysarthric speech are

related to prosody.

5.1.4 Solution: the cascade method

In this chapter, a solution is proposed to tackle the problem of the absent ground

truth training target. The method is simply cascading a seq2seq model and a non-

parallel frame-based model. It is referred to as the cascade method throughout this

thesis. The main idea is to first use a seq2seq model to convert the source speech to

the speech of a reference speaker. The intermediate speech is a by-product with the

naturalness and intelligibility at a desired level, with an unwanted speaker identity of

the reference speaker. Next, a frame-based, non-parallel VC model takes the inter-

mediate speech with the identity of the reference speaker as input and restores the

identity of the source speaker. An important assumption made here is that due to the

frame-based constraint, the non-parallel VC model changes only time-invariant char-

acteristics such as the speaker identity, while preserving time-variant characteristics,

such as pronunciation. As a result, the converted speech has the speaker identity of
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Figure 5.3: Illustration of the conversion process in the proposed cascade method for pre-

serving speaker identity. Top: dysarthric-to-normal voice conversion. Bottom: normal-

to-dysarthric voice conversion.

the source speaker while maintaining high intelligibility and naturalness.

In Section 5.2, the cascade method is described more in detail. Then, Sections 5.3

and 5.3 present the experimental evaluation of the cascade method on D2N and N2D

VC, respectively.

5.2 The cascade method

5.2.1 General description

Suppose a training dataset of the source speaker is available. The first key ingredient

to the proposed cascade method is the parallel counterpart, i.e. a training dataset from

one or several reference speakers of identical contents. The second key ingredient, as
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described in Section 5.1.4, is the assumption that due to the frame-based constraint, the

non-parallel VC model changes only time-invariant characteristics such as the speaker

identity while preserving time-variant characteristics.

Figure 5.3 is an illustration of the proposed cascade method. A seq2seq model first

converts the input speech into that of a reference speaker, either to be more intelligible

and natural or to simulate dysarthric speech. Then, a non-parallel frame-wise model

restores the identity of the source speaker. The seq2seq model is based on the Voice

Transformer Network (VTN) described in Section 2.1.2 with the text-to-speech (TTS)

pre-training technique proposed in Chapter 3. The non-parallel frame-based model

is based on the vector-quantized variational autoencoder (VQVAE)-based model pro-

posed in crank [149], an open-source VC software that combines recent advances in

autoencoder-based VC methods, including the use of hierarchical architectures, cyclic

loss, and adversarial training.

5.2.2 One-to-many and many-to-one training of the sequence-

to-sequence model

The original VTN was designed for one-to-one (O2O) VC, i.e., the model can only

convert from one training source speaker to one training target speaker. That is to

say, only the parallel utterance pairs of the source and the target speakers can be used.

However, considering the difficulty of D2N VC and N2D VC, it would be beneficial

to include more utterances to improve the performance. An advantage that can be

taken on here is that data from more than one reference normal speaker can be used.

While dysarthric patients can be rare, finding healthy speakers is relatively easy. In

this subsection, based on such an advantage, two extensions of the original O2O VC

are proposed for D2N VC and N2D VC.
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In the case of D2N VC, the O2O VTN can be extended to a one-to-many version.

Specifically, each parallel training utterance pair is composed of an utterance from the

source patient and another utterance from a healthy speaker in the training speaker

pool. Following the many-to-many VTN [150], a speaker embedding of the target

speaker is concatenated to each of the hidden representation frames (as described in

Section 2.1.1. The augmented feature sequence is then consumed by the decoder. The

speaker embedding can be a simple one-hot embedding, while here the x-vector [151]

is used.

It is worth investigating the choice of the reference speaker. Although the complete

training dataset is parallel among the patient and all reference speakers, due to the

difference in characteristics such as the speaking rate and F0 pattern, some speakers

can be easier to convert to, compared to others. One may hypothesize that choosing

a reference speaker with similar characteristics to the patient might make conversion

easier. In the experimental evaluation section, an ablation analysis of how the choice

of reference speaker affects the conversion performance in various aspects will be pre-

sented.

As for N2D VC, the model is trained in a many-to-one (M2O) fashion. While there

is still only one source healthy speaker of interest, one may utilize data from multiple

healthy speakers to improve the performance. Given a training utterance from any

of the normal speakers, the VTN model is trained to convert to the predefined target

dysarthric speaker. M2O training was also used in [152], except they used an auxiliary

phoneme recognition regularization loss.
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5.3 Experiments on dysarthric-to-normal voice con-

version

5.3.1 Experimental settings

Datasets and implementation

The dysarthric dataset used in this experiment was a Mandarin dysarthric speech

corpus provided by the Chi-Mei Hospital in Taiwan. It consists of dysarthric speech ut-

terances read by a female patient. The prompts were from the TMHINT dataset [153],

which contained 320 utterances each with ten Mandarin characters. The TMHINT

dataset was designed to be phonetically balanced. For the reference speakers, the

recordings of 17 speakers (13 male and 4 female speakers)2 in the TMSV dataset [154]

were used, where all speakers also uttered the TMHINT prompts. A 240/40/40

train/validation/test split was used, and all speech utterances were downsampled to

16 kHz. 80-dimensional mel-spectrograms with a 16 ms frame shift were extracted as

the acoustic feature.

The implementation of the VTN model was the same as that described in Chapter 3.

The TTS pretraining was conducted with the Sinica COSPRO multi-speaker Mandarin

dataset [155], which is 44 hr long. The non-parallel frame-based model was based

on a vector-quantized variational autoencoder (VQVAE)-based model implemented in

crank, which can be accessed freely3. For simplicity, it is referred to as the VAE model

in the rest of this chapter. Sinica COSPRO was used along with the TMSV and the

patient’s voice as training data for the VAE training. The Parallel WaveGAN (PWG)

was used to generate from the converted mel-spectrogram the final waveform. The

2Speaker SP11 was excluded due to labeling error.
3https://github.com/k2kobayashi/crank
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training data of PWG contained the recordings of the 18 TMSV speakers.

Evaluation metrics and protocols

For objective evaluation, the MCD described in Section 2.3 and the syllable error

rate (SER) were used. Since calculating MCD requires the ground truth data, MCD

was only calculated to evaluate the VTN model. On the other hand, to calculate the

SER, a Transformer-based ASR model trained on the AISHELL-1 dataset [156] was

first used to transcribe the converted utterance. Then, hey were then converted the

characters into pinyin, and the tone was discarded to obtain the SER of the converted

speech.

For subjective evaluation, the naturalness and conversion similarity described in

Section 2.3 were evaluated. 11 native Mandarin speakers were recruited, and audio

samples are available online4.

5.3.2 Investigation of the choice of reference speaker

In this subsection, the hypothesis on the importance of the choice of reference

speaker, which was discussed in Section 5.2.2, is examined. An objective evaluation is

first conducted. Since two types of objective metrics (MCD and SER) were adopted

in this section, it is worthwhile examining which is a more proper selection criterion.

The O2M VTN model was trained for 2000 epochs, and the best-performing models

were chosen based on MCD.

Figure 5.4 shows the results. First, since the patient is a female speaker, the gender

might be a bias in reference speaker selection. From the figure, it could be observed

4https://bit.ly/3sHxaGY
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Figure 5.4: Scatter plots of the MCD and SER scores of each speaker on the intermedi-

ate speech dev set in the dysarthric-to-normal voice conversion experiment. Both MCD

and SER are the lower the better. Red and blue dots denote female and male speakers,

respectively.

that female reference speakers tend to yield lower MCD values. However, the SER

scores did not differ much between genders, and none of the genders gave lower scores.

It could be concluded that gender influences MCD but not SER.

Another observation is that the speaker with the lowest MCD score (SP07) did not

necessarily give the lowest SER value (SP04 gave the lowest SER value), and vice versa.

Thus, it is difficult to conclude which metric is better in the reference speaker selection

process.
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Table 5.1: Results of naturalness evaluation in the dysarthric-to-normal experiments

using the test set with 95% confidence intervals. Values are higher the better.

Description SP04 SP09 SP07 SP13

Patient 2.37 ± .19

Reference speakers 4.99 ± .01

Intermediate speech 3.29 ± .32 3.16 ± .27 3.45 ± .37 3.74 ± .27

Patient converted speech 2.42 ± .30 2.38 ± .41 2.65 ± .39 2.60 ± .35

Table 5.2: Results of similarity evaluation in the dysarthric-to-normal experiments

using the test set with 95% confidence intervals. Values are higher the better.

Description SP04 SP09 SP07 SP13

Patient —

Reference speakers 9% ± 7%

Intermediate speech 8% ± 8% 8% ± 9% 30% ± 11% 25% ± 14%

Patient converted speech 45% ± 10% 45% ± 14% 49% ± 11% 42% ± 11%

5.3.3 Main results with subjective evaluation

In this subsection, the effectiveness of the proposed cascade method is verified with

a subjective test. Since it is impractical to evaluate all converted samples of the 17

reference speakers, two speakers with the lowest MCD and SER values were chosen,

i.e., MCD, SP07, and SP13 were chosen; for SER, SP04, and SP09 were chosen.

Table 5.1 shows the naturalness results. Although not significantly different, the

reference speakers with lower MCD values (SP07, SP13) outperformed the other two

speakers (SP04, SP09). Surprisingly, this trend holds for both intermediate and the



5.3. Experiments on dysarthric-to-normal voice conversion 97

final converted speech. This result implies that listeners might have paid less attention

to intelligibility, but valued other factors more. This also explains why the dysarthric

speech, although with extremely low intelligibility, still yielded a MOS score of 2.37.

Table 5.2 shows the similarity results. The similarity scores of the final converted

speech of the four speakers are not significantly different than each other, with SP07

slightly outperforming the other speakers.

Overall, the best-performing reference speaker was SP07, whose naturalness (2.65)

and similarity (49%) scores were the best among all other speakers. One might also

conclude that MCD seems to be a better metric for reference speaker selection, although

more investigation needs to be made.

It is worthwhile discussing the ability of the proposed method to preserve the speaker

identity of the source. Although the best similarity score was only 49%, feedback from

the listeners suggested that it was easy to find the converted speech different from that

of the dysarthric speech due to its special characteristics. Since the normal speech

of the patient is impossible to obtain, it is essentially difficult to evaluate conversion

similarity. Designing a better evaluation protocol is thus an important future work.

5.3.4 Degradation from the non-parallel frame-based VCmodel

As stated in Section 5.1.4, an important assumption in this chapter is that the

pronunciation should be consistent throughout the non-parallel frame-based VC model.

In this subsection, it is examined whether such an ability holds in the proposed method.

First, the preservation of intelligibility is examined by comparing the SERs of the

original dysarthric voice to (1) the intermediate speech, which is the output of the

VTN model, and (2) the final converted speech, which is the output of the VAE model.

Figure 5.5 shows the results. It can be observed that the assumption is only some-
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Figure 5.5: SER values of the input dysarthric speech and the final converted speech

of the dev set in the dysarthric-to-normal voice conversion experiment. The values are

the smaller the better.

what held, as all SER values of the final converted speech increased compared to those

of the intermediate speech. An explanation is the insufficient disentanglement ability

of the employed non-parallel frame-based model. As a result, a well-shared linguistic

representation space between healthy and dysarthric speech cannot be learned.

Next, the naturalness consistency ability is examined. From Table 5.1, it could be

observed that, regardless of which reference speaker, the naturalness scores degraded

for almost 1 MOS point. This result again shows that the adopted non-parallel frame-

based model could not guarantee such consistency.
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Although the assumption is not completely satisfied in this experiment, the SER

values from any reference speakers were all lower than that of the source dysarthric

speech. Specifically, the final converted speech of speaker SP09 gave the lowest SER of

75.8, which was 18.2 points lower than the original 94.0. Also, as stated in Section 5.3.3,

all reference speakers received a naturalness score higher than tof the patient. These

results demonstrate the effectiveness of the cascade method.

5.4 Experiments on normal-to-dysarthric voice con-

version

In D2N VC, the goal is rather clear: transform the source dysarthric speech into

normal speech, such that it sounds as natural and intelligible as healthy speakers. On

the other hand, as stated in Section 5.1.2, one important application of N2D VC is

to let a patient know possible future symptoms. Dysarthria is a progressive process,

which means that the severity level can gradually increase. Thus, one important goal

of N2D VC is to simulate the severity level. In our experiment, the severity level is

simply determined by the reference speaker, i.e., the dysarthric speaker. That is to

say, given an input normal speech utterance and a reference speaker (represented by

his/her training utterances), the converted speech generated by the N2D VC model is

expected to have the same severity as the reference.
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5.4.1 Experimental settings

Datasets and implementation

In this experiment, the UASpeech dataset [157] was used. UASpeech contains par-

allel word recordings of 15 dysarthric speakers and 13 normal control speakers. The

training and test set consists of 510 and 255 utterances, respectively. Each dysarthric

speaker is categorized into one of three intelligibility groups: low, mid, and high, which

correspond to 0− 25%, 25− 75%, and 75− 100% subjective human transcription error

rate (STER). The intelligibility of each speaker was judged by 5 non-expert American

English native speakers. Two dysarthric speakers from each intelligibility group (high:

M08, M10; mid: M05, M11; low: M04, M12) were chosen as the reference speakers for

VC.

For each dysarthric speaker, a separate M2O VTN was trained using the data of

that speaker and all 14 control speakers. Since UASpeech is an English dataset, TTS

pretraining was conducted with M-AILABS judy [99], as in Chapter 3. The non-parallel

frame-based VC method is also based on the VAE model proposed in crank [149],

following the experiment in Section 5.3. In the preliminary experiments, it was found

that training with only normal speech is better than training with a mix of dysarthric

and normal speech. Thus, only utterances from the 13 control speakers were used to

train the VAE model. Again, following Section 5.3, the PWG was used to generate

from the converted mel-spectrogram the final waveform. The training data of PWG

contained speech from all control speakers in UASpeech.
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Evaluation metrics and protocols

For objective evaluation, the phoneme error rate (PER) was calculated with an

HMM-based ASR model pre-trained on the TIMIT dataset [123], following [158]. First,

the ASR model outputs phonemes of the converted speech. Then, a grapheme-to-

phoneme tool5 was used to transform the ground truth text into phonemes. Finally,

the PER is calculated between the two phoneme sequences. In addition to the raw

scores, the correlation coefficient r of the scores of the converted speech and the STER

of the reference speech is also reported. For PER, the lower the better. For the

correlation coefficient r, the higher the better.

For the subjective evaluation test, due to budget constraints, not all conversion pairs

were evaluated, and audio samples can be found online6. The following dimensions were

evaluated:

• Naturalness: The MOS test described in Section 2.3 was adopted, with the

resolution modified from 1 to 0.5. At the beginning of the test, listeners were

guided with an explanation of the definition of naturalness, followed by an exam-

ple of normal and pathological (low severity) speech. Listeners were instructed

to rate these both as 5 (highly natural). Each test asked the listener to rate

13 utterances for both pathological speakers of each severity (low, high, mid),

leading to a total of 78 utterances. Subsequently, the experiment was repeated

with the ground truth samples. In total, 30 native American English listeners

were recruited.

• Similarity: The similarity test protocol described in Section 2.3 was adopted.

Here, two scores are reported, which are the similarity scores to the source nor-

5An open-sourced tool was used: https://github.com/Kyubyong/g2p.
6https://unilight.github.io/Publication-Demos/publications/n2d-vc
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mal speaker and reference dysarthric patient, respectively. Three pathological

speakers (M04, M11, M10) which were shown to have recognizable characteris-

tics in a previous study [147] were chosen. Furthermore, speech samples from two

randomly sampled control speakers were also chosen. In total, 5 native American

English listeners were recruited.

• Severity: Accessing the severity of dysarthric is a highly professional task. In

the study, 3 trained speech-language pathologists (SLPs) were recruited. An AB

evaluation study is carried out in this section. The listener is presented with two

different synthesized utterances from two unknown speakers with different speech

severity. The listener is asked to select the speech sample that is perceived as

being more pathological. Since the desired severity is already known, the “accu-

racy” can be calculated, i.e., how often the SLP can correctly choose the sample

that is supposed to be more severe. Due to the high cost of recruiting SLPs, only

four conversion pairs were evaluated. Table 5.6 shows the four conversion pairs.

For each pair, 20 utterances were rated.

5.4.2 Evaluation results

Objective evaluations

The PER results are shown in Table 5.3. It could be observed that the r value

decreases dramatically from 0.83 to 0.68 after the non-parallel frame-based model. This

finding is similar to that in Section 5.3.4, suggesting that the intelligibility preservation

ability of the current VAE model is not sufficient.
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Table 5.3: PER and STER scores as well as the correlation coefficients r in the normal-

to-dysarthric voice conversion experiment. The PER values are the lower the better,

and the correlation coefficients are the higher the better.

Severity group High Mid Low
r

Reference speaker M08 M10 M05 M11 M04 M12

PER

Intermediate

speech
58.7 55.1 84.1 71.8 79.6 103.4 0.83

Converted

speech
62.9 59.3 106.3 76.2 81.2 120.0 0.68

STER 7.0 7.0 42.0 38.0 98.0 92.6 1.0

Subjective evaluations

Table 5.4 shows the naturalness results. It could be observed that for natural speech,

the MOS decreases with the increase in the severity level. This finding is similar to a

previous study [147]. On the other hand, the converted samples are consistently rated

as less natural than the natural ones (with p < 0.001 calculated with a Wilcoxon signed-

rank test). However, it is worthwhile noting that, though not directly comparable to

the results in [147], the MOS values are overall higher. This could be attributed to the

use of the powerful seq2seq model.

Table 5.5 shows the similarity evaluation results. First, all scores in the “similarity

to reference patient” column are less than 50%, suggesting that there is no remaining

reference patient speaker identity in the final converted speech. However, at the same

time, all scores in the “similarity to source normal speaker” column are also less than

50%, except for the “M10 → CF03” pair. Before concluding that the identity preser-
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Table 5.4: Naturalness results with 95% confidence intervals in the normal-to-dysarthric

voice conversion experiment. All values are the higher the better.

Severity level Control speakers High Mid Low

Natural speech 3.93 ± 0.54 3.92 ± 0.54 2.86 ± 0.89 2.32 ± 1.16

Converted speech - 2.70 ± 0.95 2.28 ± 1.03 1.94 ± 1.21

vation requirement is not satisfied, it is worthwhile noting that, from the feedback of

listeners, it is again difficult to evaluate similarity by listening to a dysarthric speech

sample and a normal speech sample. This problem is also present in Section 5.3.3.

Finally, Table 5.6 shows the severity results. First, the SLPs always perceived the

more severe speakers as more severe. This is evident by the fact that each entry in

Table 5.6 is over 50%. Compared to the natural speech, the accuracy of the intermediate

speech is very similar, indicating that the intermediate speech simulates the severity

aspect well. However, a large degradation can be observed in all conversion pairs in

the converted speech stage, suggesting that the distortion caused by the VAE model

makes it harder for SLPs to correctly distinguish the severity. This conclusion is again

consistent with that in Section 5.3.3.

5.5 Conclusions and Discussions

In this chapter, the application of VC to dysarthric voice conversion was studied. To

solve the problem of the absence of ground truth training data, a cascade method that

combines (1) seq2seq modeling based on parallel data and (2) non-parallel frame-based

modeling realized with a VAE model was proposed.

In the D2N VC experiments, it was demonstrated that the cascade method could
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Table 5.5: Similarity results with 95% confidence intervals in the normal-to-dysarthric

voice conversion experiments. For similarity to source normal speaker, the higher the

better; for similarity to reference patient, the lower the better.

Similarity to source normal speaker Similarity to reference patient

M04 → CM05 20% ± 10% 32% ± 12%

M11 → CM09 37% ± 13% 43% ± 13%

M10 → CF03 55% ± 13% 8% ± 7%

M04 → CM04 33% ± 12% 27% ± 12%

M11 → CM10 23% ± 11% 32% ± 12%

M10 → CF02 48% ± 13% 10% ± 8%

Ideal 100% 0%

improve the quality and preserve the source speaker identity to a certain extent. Yet,

the VAE model does not guarantee quality consistency, leading to sub-optimal quality

and speaker identity preservation ability.

In the N2D VC experiments, it was found that (1) a better naturalness was achieved

compared to that in the previous work [147], (2) the cascade method was able to

mimic the severity characteristics linearly according to the SLPs, and (3) the quality

consistency and speaker identity preservation ability can still be improved.

To conclude this chapter, the following is a list of three possible future directions.

• Improving the seq2seq model. Compared to the dataset used in Chapter 3,

dysarthric speech contains more variation and is thus harder to model for a

complicated model like the seq2seq network. From in-lab studies, it was found

that the speech samples generated by the seq2seq model suffer from problems like
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Table 5.6: Severity results with significance levels calculated using a binomial test in

the normal-to-dysarthric voice conversion experiments. The severity of each speaker is

specified in the parentheses. ***: p < 0.001; *: p < 0.05.

Speaker pair Natural speech Intermediate speech Converted speech

M04 (low) vs M05 (mid) 95% *** 85% *** 53%

M05 (mid) vs M08 (high) 90% *** 95% *** 80% ***

M12 (low) vs M11 (mid) 93% *** 85% *** 75% *

M11 (mid) vs M10 (high) 98% *** 95% *** 68% *

missing and repeating words, which are common problems of a not well-trained

seq2seq model. Possible improving techniques include text supervision [159], data

augmentation [152], or non-autoregressive modeling [160].

• A non-parallel frame-based model with better quality preservation

ability. The employed VAE model was shown to be insufficient in preserving

intelligibility and naturalness. It is worthwhile resorting to other frame-based

models such as the recognition-synthesis-based methods described in Section 2.4.

• Better evaluation protocols. From Tables 5.1, 5.2, 5.4 and 5.2, it could

be observed that the confidence intervals were all much larger than those seen

in Chapters 3 and 4, indicating that there were large disagreements between the

listeners. Even the SLPs, who underwent professional training, provided feedback

that the tests were quite difficult. It is worthwhile to re-examine the evaluation

protocol designs.
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Foreign Accent Conversion

In this chapter, continuing the study of the third problem stated in Section 1.2.3,

the task of foreign accent conversion (FAC) is studied1.

6.1 Introduction

The FAC task in this chapter is to, given an accented speech utterance spoken by a

non-native source speaker, generate a native-sounding version with the same speaker

identity as the source speaker. Applications of FAC include computer-aided language

learning [5, 161, 162] and entertainment such as movie dubbing [163]. As stated in

Section 1.2.3, FAC suffers from the same ground truth training data absence problem,

as it is impossible to collect native speech from a non-native speaker.

In the FAC literature, most works tried to utilize accent-independent features to

decompose accents from voice identity. For instance, early attempts made use of artic-

ulatory trajectories (e.g., lips and tongue movements) [164–166] and vocal tract length

normalization [167]. More recently, more simplified features such as phonetic poste-

riorgrams (PPGs) [168, 169] and text [170] are combined with advanced deep neural

1Readers should note that the term “accent conversion” can be referred to many different tasks in

the literature. While many have used this term to refer to the conversion between different accents or

from native to accented speech, in this chapter the focus is on the task of “de-accenting”.
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Figure 6.1: Left: the training data, which is a parallel corpus between the source non-

native speaker and a reference native speaker. Right: the goal in the conversion phase of

FAC. The nativeness is expected to be increased while maintaining the speaker identity.

network architectures, especially sequence-to-sequence (seq2seq) VC models, whose

ability to model segmental and prosody features simultaneously play a crucial role in

FAC.

However, only very few works have tried to address ground-truth-free FAC [171,172]2.

In these works, the main idea is similar to that stated in Section 5.2.1. The first

ingredient, as depicted in the left-hand side of Figure 6.1, is to collect a training corpus

from the source non-native speaker and then collect the native counterpart from a

native reference speaker with the same prompt set. Then, a combination of state-of-

the-art VC methods for disentangling the speaker and content is designed to achieve

FAC. In addition to the cascade method described in Chapter 5, some previous works

in the field of FAC also share a similar idea [171, 172]. However, these works were

developed in parallel, and comparisons were often conducted on a system-to-system

basis, leading to a lack of comparison and understanding of each method.

2Some previous works [171] used the term ‘reference-free‘, but it might be confusing since a reference

speaker is needed for training. Therefore, the term “ground-truth-free” is used in the rest of the paper,

where “ground-truth” refers to the ground-truth used as the training target.
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Figure 6.2: The non-parallel frame-based voice conversion model and its training process

used in the foreign accent conversion experiment.

In this chapter, the aim is to systematically evaluate three ground-truth-free methods

for FAC. Experiments are conducted in a unified setting using a shared database, model

architecture, and waveform synthesizer. A subjective evaluation test is conducted to

assess three different aspects of the synthesized samples, namely naturalness, speaker

similarity, and accentedness. As will be shown in the experimental evaluation section,

it was found no single method was significantly better than the others in

all evaluation axes, which is in contrast to conclusions drawn in previous studies

[172]. Results of an objective intelligibility measure which was used in previous studies

[171] showed that it might not correlate well to subjective accentedness. Finally, to

promote reproducible FAC research, the implementation is open-sourced to help future

researchers improve upon the evaluated systems3.

3https://github.com/unilight/seq2seq-vc
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Figure 6.3: Illustration of the training and conversion processes of the cascade method

for foreign accent conversion.

6.2 Evaluated methods

The three methods to be evaluated share two common materials. The first material

is a parallel dataset between the non-native speaker and a reference native speaker, as

described in Section 6.1. The second material is a non-parallel frame-based VC model.

Different from the autoencoder-based method used in Chapter 5, to reflect the quality

degradation problem in Section 5.5, the recognition-synthesis (rec-syn)-based method

described in Section 2.2.2 is used. The training of the rec-syn-based VC model requires

only the data of the speaker to be synthesized. Thus, only the dataset of the source

non-native speaker is used, as illustrated in Figure 6.2. This model will then be fixed

in the subsequent training processes of all three methods. In the following subsections,

the detailed procedures of all three methods will be described.

6.2.1 Method 1: cascade

The cascade method is essentially identical to that described in Section 5.2. Although

it was applied to dysarthric VC, since dysarthric VC and FAC share a common problem

of lacking ground-truth training target, here it is examined whether it could be applied
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Figure 6.4: Illustration of the training and conversion processes of the synthetic target

generation method for foreign accent conversion.

to FAC.

In the cascade method, a seq2seq model is trained to map from the source non-native

speech to that of the reference native speaker. During conversion, the source speech

is first sent into the seq2seq model to get the first stage converted speech. Although

the nativeness is improved, the speaker’s identity is changed into that of the reference

speaker. Therefore, the non-parallel VC model is then used to change the identity back

to that of the native speaker, while maintaining the pronunciation.

6.2.2 Method 2: synthetic target generation (STG)

The second method is called synthetic target generation (STG) [171]. The main idea

is to use the non-parallel frame-based VC model to convert the training dataset of the

native speaker. The resulting synthetic training target has (1) the speaker identity of

the non-native speaker, and (2) the nativeness of the reference native speaker, depend-

ing on the pronunciation preservation ability of the non-parallel frame-based VC model.

This step gives the name “synthetic target generation”. Then, the seq2seq model is

simply trained using the non-native training set as the source, and the synthetic native

speech with the speaker identity of the same non-native speaker as the target.
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Figure 6.5: Illustration of the training and conversion processes of the latent space

conversion method for foreign accent conversion.

During conversion, different from the cascade method where two models are needed,

only the seq2seq model is used to generate the de-accented speech with the identity of

the non-native speaker.

6.2.3 Method 3: latent space conversion (LSC)

The third method is called latent space conversion (LSC) [172]4. The main idea is to

utilize the speaker-independent attribute of the intermediate representation in rec-syn-

based VC models. First, the recognizer transfers the training speech utterances of the

source non-native and target native speakers from the speech space to the intermediate

representation (or latent feature) space. Then, the seq2seq model is trained to map

4The term “latent feature” and “latent space” is used interchangeably with “intermediate repre-

sentation” and “intermediate representation space”, respectively.
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Figure 6.6: Illustration of the difference in the training of the sequence-to-sequence

model of the three evaluated methods in the foreign accent conversion experiment.

the source latent features to the target latent features.

During conversion, the intermediate representation of the source non-native speech

is first extracted and transformed to the native counterpart using the seq2seq model.

Finally, the synthesizer of the rec-syn-based VC model is used to inject the identity of

the non-native speaker into the converted latent features to generate the final converted

speech.

6.2.4 Difference between the three methods

As these methods might be seemingly complicated in their ways, the difference lies

in the training input and output of the seq2seq model. Figure 6.6 depicts such
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a difference. First, in the cascade method, the seq2seq model needs to simultaneously

convert the speaker identity and the nativeness, which is considered to be the most

difficult. In contrast, STG first changes the speaker identity of the native training set,

such that the seq2seq model only needs to model the pronunciation pattern. Finally,

to further ease the job of the seq2seq model, LSC projects the training datasets onto

the latent space, which is speaker-independent. Based on this observation, although it

is difficult to determine whether the learning of the seq2seq model in STG is harder

than in LSC, it could at least be hypothesized that the performance of cascade is worse

than those of STG and LSC. This hypothesis will be examined in Section 6.3.3.

These three methods also have their weakness. For instance, during the conversion

phase, not only cascade but also LSC does the input speech pass through a pipeline

consisting of multiple modules, suffering from potential error propagation. STG, on

the other hand, requires only the seq2seq module during conversion and thus does

not suffer from error propagation, but the synthetic target data inevitably contains

artifacts. The performance of the seq2seq model is then bounded by how imperfect the

synthetic data is. With these unique limitations, readers should note that it is difficult

to compare these methods.

6.3 Experimental evaluation results

6.3.1 Experimental setting

The datasets used in this experiment are L2-ARCTIC [173] and ARCTIC. Specifi-

cally, the non-native and reference native speakers are THXC (Chinese male) and bdl

(English male) from the L2-ARCTIC [173] and ARCTIC datasets, respectively. There

are 1032/50/50 training/development/testing parallel utterances respectively, and the
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total duration of the training set is around one hour. All samples are in 16 kHz. The

downsampled LJSpeech dataset [10] was used for the seq2seq model pertaining.

The seq2seq model was again based on the VTN model described in Chapter 3 with

the same TTS pre-training dataset, M-AILABS judy. For the rec-syn-based model,

the Taco2-AR model described in Chapter 4 was adopted. As an ablation study,

two types of intermediate representations were investigated: (1) PPG extracted from

a Conformer automatic speech recognition (ASR) model trained on the LibriSpeech

dataset (960 hours), and (2) vq-wav2vec [116], a self-supervised speech representation

whose extractor was trained on the LibriLight [118] dataset (60k hours). The Parallel

WaveGAN [104] was used to generate from the converted mel-spectrogram the final

waveform. It was trained with only the training set of the source non-native speaker.

As the implementation is open-sourced5, interested readers are encouraged to refer to

the source code for detailed hyperparameters.

Following previous works [171, 172], a subjective evaluation test was conducted on

three axes. Audio samples are available online6.

• Naturalness was evaluated using a MOS test, as described in Section 2.3. Sam-

ples of the source non-native and reference native speech were also included. The

Amazon Mechanical Turk (MTurk) crowd-sourcing platform was used to recruit

65 workers, and each of them rated 20 samples.

• Similarity was evaluated in the same fashion as described in Section 2.3. The

same 65 workers from Amazon MTurk who participated the naturalness test were

also asked to rate the similarity.

• Accentedness was also evaluated using a MOS test, with the only difference in

5See footnote 3
6https://unilight.github.io/Publication-Demos/publications/fac-evaluate
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Table 6.1: Objective and subjective evaluation results with 95% confidence interval of

samples from the evaluated methods, source and target.

Method Extractor CER/WER
Naturalness ↑

(1-5)

Similarity ↑

(0% -100%)

Accentedness ↓

(1-9)

Source (non-native) 5.3/12.3 4.18±0.19 – 6.06±0.38

Cascade
vq-wav2vec 29.1/52.5 3.17±0.23 28.7%±6.7% 5.41±0.32

PPG 30.4/52.7 3.50±0.22 45.7%±7.3% 4.18±0.30

STG
vq-wav2vec 25.3/45.0 3.23±0.21 37.0%±7.0% 5.27±0.31

PPG 17.7/40.9 3.66±0.20 57.3%±7.8% 4.36±0.32

LSC
vq-wav2vec 33.4/52.5 3.65±0.25 36.0%±7.0% 4.61±0.32

PPG 9.8/19.5 3.64±0.22 43.8%±7.5% 3.95±0.31

Target (native) 1.3/4.3 4.42±0.18 – 1.49±0.21

that following [171], a 9-point scale was used. In addition, due to the difficulty of

the task itself, instead of using Amazon MTurk, an in-lab study was conducted

by recruiting 19 listeners to each listen to 40 samples.

Only one objective measure was calculated in this experiment: the character/word

error rate (CER/WER) obtained by running an ASR model on the speech samples.

The same pretrained ASR model based on wav2vec 2.0 was used, following Chapter 4.

6.3.2 Design choice of the non-parallel frame-based model

The ablation study on the effectiveness of PPGs and vq-wav2vec as the intermediate

representation in the task of FAC is first presented. The results are shown in Table 6.1.
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In all three subjective evaluation axes (naturalness, similarity, and accentedness) and

all three evaluated methods, using PPG was almost always significantly better than

using vq-wav2vec. The only exception was that the naturalness scores were nearly

identical when using vq-wav2vec and PPG in the LSC scenario.

In Chapter 4, it was already shown that PPG trained on large-scale datasets could

outperform vq-wav2vec in terms of naturalness and similarity. From Table 6.1, the

superiority of PPG in accentedness further verifies the importance of linguistic super-

vision in the training of the recognizer. In the rest of the section, the focus will be on

the results of the three methods using PPG.

6.3.3 Main results of the three evaluated methods

In this subsection, the results in Table 6.1 will be analyzed using the three subjective

evaluation axes. Meanwhile, the performance tendency will be examined using the

hypothesis described in Section 6.2.4.

In terms of naturalness, Table 6.1 shows that, as the confidence intervals overlap,

there was no statistically significant difference between the three methods. This sug-

gests that naturalness is not affected by the difficulty of the seq2seq mapping.

Next, for similarity, STG is significantly better than cascade and LSC. This result

somehow verifies the above-mentioned hypothesis. Also, the relatively low similarity of

LSC implies that the assumption of speaker independence of the latent features may

be invalid in the context of FAC.

Finally, in terms of accentedness, the only significant difference that can be observed

is the superiority of LSC over STG. Although this does not match the hypothesis,

note that the accentedness score of LSC is significantly better than cascade and STG

when using vq-wav2vec. This suggests that LSC is more robust to the choice of the
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intermediate representation.

In general, no single method can significantly outperform the others in all three

subjective evaluation axes. This is probably one of the most important messages in

this study, as it contradicts the conclusion in [172].

6.3.4 Is character/word error rate a proper objective measure

for FAC?

The feasibility of using objective measures to predict subjective results is a long-

standing problem in VC research [94, 174]. Developing such a measure allows for in-

specting the performance during system development without the expensive subjective

evaluation process. Some previous works on FAC reported CER/WER as an indirect

measure of accentedness, with the expectation that reducing accentedness can also re-

duce the error rates. The validation of such an expectation will be investigated in this

subsection.

With the 8 data points in Table 6.1, the linear correlation coefficients between ac-

centedness and CER/WER are 0.413 and 0.442, respectively. It can be then inferred

that there is a weak yet insignificant correlation between accentedness and CER/WER.

It is therefore concluded that there are other factors than intelligibility when it comes

to accentedness, thus using CER/WER solely as an objective measure for FAC is un-

reliable.

6.4 Discussions and Conclusions

In this chapter, three methods for ground-truth-free FAC were evaluated system-

atically. Experiments were carried out in a unified setting, and subjective tests were
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conducted in terms of naturalness, speaker similarity, and accentedness. In addition to

the detailed discussion of each method and evaluation axis presented in Section 6.3.3,

the most important message that the evaluation results show is that no single method

was significantly better than the other two in all evaluation axes.

While this may arise from the insufficiency of the evaluated methods, it is also

worthwhile questioning whether the evaluation protocols adopted in this chapter are

proper. Although the subjective evaluation protocol was designed to be as close to that

adopted in previous works [171,172] as possible, the large confidence intervals observed

in Table 6.1 suggest that a more reliable protocol needs to be developed. Qualitatively,

listener feedback suggests that a 9-point scale test as used in [171,172,175] is too fine-

grained to give precise ratings. Also, while it is easy to tell whether a sample is native

or not, rating the degree of accentedness is rather difficult. Comparative measurements

such as preference tests might be more suitable, as advised in [176].

Also, listeners mentioned that even as native English speakers, it was difficult to

rate accentedness. One way to improve this is to provide a training section containing

utterances with different levels of accentedness, as the one provided in [177]. Another

alternative is to directly recruit linguistics or educators as in Section 5.4.1, as someone

with in-depth professional knowledge may make judgments more confidently.





7 Conclusions

7.1 Summary of This Thesis

This thesis revolved around the task of voice conversion (VC), and the problem of

interest was to tackle the eternal scarcity of training data to learn a good mapping

function. The main idea of this thesis was to apply pre-training, which tries to transfer

knowledge from a machine learning model trained with a larger dataset in another do-

main. In this thesis, pre-training was applied to improve the performance and training

data efficiency of VC, as well as the application to ground-truth-free VC problems.

In Chapter 3, the focus was on improving sequence-to-sequence (seq2seq) VC mod-

eling, which was on the performance dimension. The proposed method was a pre-

training technique based on two popular tasks in speech processing, namely text-to-

speech (TTS) and automatic speech recognition (ASR). From an information perspec-

tive, these two tasks are by nature suitable sources of knowledge transfer, and the

abundant resources (i.e., available training data) in these two tasks also motivate the

use of these two tasks as the pretext task. The main contribution of this chapter was

to boost the robustness of seq2seq VC models such that when trained with only five

minutes of parallel training data, a naturalness mean opinion score (MOS) of 4.11

and a similarity score of 68% could be achieved with the proposed TTS pre-training

technique.

In Chapter 4, the focus was on improving recognition-synthesis (rec-syn)-based non-
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parallel VC, which was on the training data efficiency dimension. A large-scale

study was carried out to examine the effectiveness of applying various self-supervised

speech representations (S3Rs) as the intermediate representation in rec-syn-based VC.

Self-supervised learning is attractive in unlocking the use of unlabeled datasets for pre-

training, which has become a dominant training paradigm in many research fields in

deep learning. The main contribution was the development of S3PRL-VC, a series of

academic research activities including a toolkit, a benchmark, and a series of evaluation

results of S3R-based VC. The unified task design, model architecture, and evaluation

metrics are beneficial for future S3R researchers to conveniently test their newly de-

veloped S3R model. The large-scale study also brought various fruitful insights to

not only the S3R but also the VC community. For the S3R community, by utilizing

the characteristics of VC, the ability of each S3R model to disentangle speaker and

content information was systematically investigated. For the VC community, it could

be expected that the first unified comparative study of S3R-based VC could guide

researchers toward better design choices when building their systems.

The third dimension was to solve a typical VC application category, where the ground

truth training target is unavailable. In this category, instead of converting the speaker’s

identity as in most VC research, the goal is to transform a certain attribute while

maintaining the identity. In these applications, it is impossible to collect the training

target for the VC model training, so seq2seq models cannot be applied. Also, the

attribute is often correlated to prosody, which cannot be well converted by frame-based

VC models. In Chapter 5, as the first case study, dysarthric VC was investigated.

As an initial investigation, a cascade method, which combines seq2seq and rec-syn-

based VC modeling, was proposed. The main contribution of this chapter was to show

initial investigation results. In dysarthric-to-normal (D2N) VC, a naturalness mean
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opinion score (MOS) of 2.65 and a similarity score of 49% were achieved. In normal-

to-dysarthric (N2D) VC, it was initially shown that the proposed method could convert

the severity linearly, i.e., listeners could judge which converted speech sample was more

severe than the other. Discussions also revealed the importance of reflecting on the

evaluation experiment design.

In Chapter 6, the task of foreign accent conversion (FAC) was chosen as the second

application study. In addition to the cascade method, two additional methods that

were previously proposed in the FAC literature were taken into consideration, as they

all combined seq2seq and rec-syn-based VC modeling. a systematical experimental

evaluation was conducted to examine the naturalness, similarity, and accentedness

aspects of the three methods. The main contribution of this chapter was to show that

no single method was superior to the others, which contradicted the conclusion derived

in previous studies. Similar to Chapter 5, the results again suggested the importance

of a better evaluation protocol design.

7.2 Future Work

The results of the voice conversion challenge (VCC) 2020 [9] made some people think

that VC is a “solved task”, as the top system achieved a similarity score that was not

significantly different from natural speech samples, and the naturalness also almost

reached that level. In this thesis, the thesis scope illustrated in Figure 1.5 provided a

new perspective on the current VC research trend. Based on the results and insights

derived from this thesis, several potential research directions can be pursued in the

future, as will be discussed in the following subsections.
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7.2.1 Low-latency, real-time sequence-to-sequence VC

There are many applications where low-latency, real-time (LLRT) VC is demanded.

A system is considered real-time if the real-time factor (RTF), which is the ratio be-

tween (1) the time taken to process the input and (2) the input duration, is smaller or

equal to 1. On the other hand, latency refers to the time difference between the input

and the output, and in speech communication, the threshold of a low-latency system

is around 100 ms1.

The D2N VC described in Chapter 5 is one typical application that requires the

VC system to be LLRT. One could easily imagine that hand-held speaking aid devices

that support D2N VC shall demand such a fast, instant processing speed. On the other

hand, certain applications of the FAC task described in Chapter 6 also require the VC

system to be LLRT. For instance, in international call centers that recruit non-native

customer service agents, a FAC system that de-accents the talkers’ speech needs to

operate immediately with low latency.

There has been a line of work on developing LLRT VC systems [178–180]. However,

these systems are mostly based on frame-based models. As discussed previously, the

methods used in Chapters 5 and 6 adopted seq2seq models to model prosody, which

plays an important role in applications like dysarthric VC and FAC. An initial attempt

was made to develop LLRT seq2seq VC [181], which can be seen as an important related

work to further apply to dysarthric VC and FAC.

1Another term streaming refers to the ability to process one frame in a time interval smaller than

the frame shift. For example, if the frame shift is set to 10 ms, then the time to generate one frame

of speech should be smaller than 10 ms.
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7.2.2 Controllable intermediate representation for various VC

applications

In Chapters 4 and 6, the phonetic posteriorgram (PPG) was shown to be superior to

S3Rs in rec-syn-based VC, even for applications that are beyond speaker conversion.

An explanation was that unnecessary information in the S3Rs was not well disentan-

gled, giving the synthesizers a hard time to be well-trained. This result is somewhat

counter-intuitive, as one might assume that the larger the pre-training dataset is, the

better the performance is in the downstream task. Also, the “unnecessary” information

in the S3R could be expected to be beneficial in certain applications. For instance, in

the singing voice conversion challenge 2023 (SVCC2023) [182], several top-performing

systems adopted advanced S3Rs instead of PPGs. It is therefore of significant interest

to design a controllable intermediate representation, whether based on self-supervised

learning or not, such that one could decide what information to be kept in the repre-

sentation, depending on the target application.

7.2.3 Better evaluation design for VC

In almost all subjective evaluation tests presented in Chapters 5 and 6, the confidence

intervals were much larger than those shown in Chapters 3 and 4. These large intervals

are at the edge of drawing statistically significant conclusions from these experiments.

One possible reason was that evaluation in these special VC applications often required

domain-specific knowledge. A solution as simple as recruiting professional specialists

for evaluation would be, however, expensive or even impossible.

The other solution is to redesign the evaluation protocols. Recently, there has been

an increasing backlash on employing MOS tests in speech synthesis evaluation [90,183],
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criticizing the lack of detailed information reported in papers [184], its inconsistency

between different MOS tests [185], insufficient number of samples used in papers [186],

and robustness to anchor systems [187]. There exist some more trustworthy evaluation

tests, such as the AB preference test or the MUSHRA test [188], but are not widely

adopted due to the increased cost when conducting these systems. Researchers need

to reach a consensus on a unified, reliable, and transferrable protocol, to facilitate a

better research community.
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