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Who am I?
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• Assistant professor @ Toda lab, Nagoya Univ., Japan
• National Taiwan Univ. (B.E.)
⇨ Nagoya Univ., Japan (M.S. & Ph.D.)

• Research interest
• ~ Ph.D.: voice conversion
• Now: speech quality assessment, voice anonymization

• Specialty: organizing challenges & building toolkits
• Voice conversion challenge: 2020, 2023, 2025
• VoiceMOS Challenge: 2022, 2023, 2024, 2025
• seq2seq-vc, s3prl-vc, sheet, jatts

• HP, Google Scholar, Github

https://www.toda.is.i.nagoya-u.ac.jp/
https://github.com/unilight/seq2seq-vc
https://github.com/unilight/s3prl-vc
https://github.com/unilight/sheet
https://github.com/unilight/jatts
https://unilight.github.io/
https://scholar.google.com/citations?user=g71mJO4AAAAJ
https://github.com/unilight


What is speech quality assessment (SQA)?

• Assess = evaluate → speech quality evaluation
• What is quality? → an umbrella term!

• Noisy/clean? Robotic? Native?
• Take SQA for synthetic speech as an example: 

• 1980s to early 1990s: intelligibility, comprehension
Mid-1990s and 2000s: naturalness, intelligibility
2010s to the present: similarity, hard cases, etc.

• Nowadays: we ask for more than quality! Similarity, diversity, … etc.
• Properties of SQA:

• Subjective: cognitive difference among different people
• Relative: results differ when the reference sample(s) change
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Why did I shift from “synthesis” to “evaluation”?

• The era of “speech synthesis as fundamental research” is over
• People are seeking for more than naturalness
• In voice conversion: emotion conversion, accent conversion…
• Evaluating these dimensions is hard!

• Evaluation is what makes science different from product development
• (Technically speaking) the goal of product is to satisfy the market & the customers
• In science we care about “progress” = ”fair evaluation”

• The ability to “evaluate” is the ability to “appreciate”
• Ex., making AI understand movies, music, art…
• Related to sociology, psychology, …
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Outline of today’s talk

1. Speech quality assessment in the era of DNNs
2. Experiences and lessons from the VoiceMOS Challenge Series
3. Ongoing work and unexplored problems
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Speech quality assessment in the 
era of DNNs
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You might have seen these metrics in papers…

PESQ

STOI

SSNR

SI-SDR
MOS

DNSMOS

MUSHRA

MCD

SIMViSQOL

NAT

ABX

POLQA
WER

P. 563
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Let’s try to classify them!



Ways to categorize SQA:
SQA for synthetic/non-synthetic speech
• Synthetic speech: text-to-speech (TTS), voice conversion, …
• Non-synthetic speech: speech that went through distortion

• Think about telephony: noise, reverberation, speech coding, clipping, packet loss, etc.
• Has a longer history

• Observation: in the literature, SQA for synthetic/non-synthetic speech seems 
to be different research fields. Why?
• IMO, SQA for non-synthetic speech is “easier” because it has a ground truth
• Synthetic speech: no ground truth because of the “one-to-many” nature

• Consider TTS: <text, speaker> → speech; there are infinite realizations for a given input
• Natural fluctuation in human speech production

Different SQA methods are needed to tackle the difference 
in nature between synthetic and non-synthetic speech

Exclude speech enhancement, 
source separation…

(My definition)
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(My opinion)



Ways to categorize SQA: subjective/objective 

• Subjective measure: in the form of listening tests (i.e., human studies)
• Subjective is the most “accurate” SQA method

• The end-user of most speech “generation” tasks is human
• (Exceptions: speech enhancement as front end for ASR)

• Objective measure: any “machine-based” method other than listening tests
• Subjective tests: too costly in terms of time and money

IMO: for any objective measure to be valid, its correlation 
with subjective opinions should be first verified

Main focus of this talk!
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Subjective test types

• Most common type nowadays: mean opinion score (MOS)
• Takes the mean of opinion scores from multiple listeners, usually range from 1-5.
• Falls into the category of absolute category rating (ACR)
• Critiques: relative to surrounding samples, equal-ranging bias
• (Sub-optimal) Solutions: provide references (DMOS; MUSHRA: low-pass filtered)

• What the community tries to promote: pairwise preference (AB) test
• Comparing is less noisy than direct scoring
• The human auditory system can make comparisons rather than absolute judgments
• Disadvantage: hard to scale up
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Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A., Ramchandran, K., & Wainwright, M. 
(2014). When is it better to compare than to score?. arXiv preprint arXiv:1406.6618.

M. Goldstein, “Classification of methods used for assessment of text-to-speech systems 
according to the demands placed on the listener,” Speech Communication, vol. 16, no. 
3, pp. 225–244, 1995. 



Ways to categorize SQA: intrusive/non-intrusive

• Intrusive = reference-based = double-ended
Non-intrusive = reference-free = single-ended
• SQA for non-synthetic speech usually adopts intrusive methods

• Because there is a clear ground-truth (as mentioned before)
• Examples: short-time objective intelligibility (STOI), Perceptual Evaluation of Speech Quality 

(PESQ), scale invariant signal-to-distortion ratio (SI-SDR)

• It is harder to adopt intrusive methods in SQA for synthetic speech
• However, intrusive methods are sometime used: Mel cesptrum distortion (MCD), 

speaker similarity tests, ABX preference tests
• Developing non-intrusive methods has been a trend in the past decade.
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Ways to categorize SQA: signal-/model-based

• Model-based: learns from data to make the prediction
• Advantage: correlates better with human judgements
• Disadvantage: generalization issues

• Signal-based: does not require learning such a model
• Calculates some pre-defined distance between input and reference
• Advantage: suffers less from generalization
• Disadvantage: mostly intrusive

(My definition)

⇨ Gaining attention since 
late 2010s thanks to DNNs!
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Let’s categorize some non DNN-based objective 
SQA metrics…

Metric Evaluation target? Intrusive? Non-intrusive Signal-/model-based What does it measure?

PESQ Non-synthetic speech Intrusive Model-based! Perceptual quality

STOI Non-synthetic speech Intrusive Signal-based intelligibility

SSNR Non-synthetic speech
(for speech enhancement) Intrusive Signal-based Signal distortion

SI-SDR Non-synthetic speech
(for source separation) Intrusive Signal-based Signal distortion

POLQA Non-synthetic speech
(for telephony) Intrusive Signal-based Perceptual quality

ViSQOL Non-synthetic speech
(for VoIP, codecs) Intrusive Signal-based Perceptual quality

P.563 Synthetic speech Non-intrusive Signal-based Perceptual quality

MCD Synthetic speech Intrusive Signal-based Spectral distortion
13



DNN-based SQA: basic idea & learning target
• Early attempts: intrusive methods; non-intrusive has soon become mainstream

• Way to categorize DNN-based SQA: learning target
1. Some other objective metric: PESQ, STOI, … etc.

• Motivation: use a non-intrusive network to mimic intrusive metrics
• Advantage: data is infinite (can be artificially generated)

2. Human judgement scores ⇨ subjective speech quality assessment (SSQA)
• Collected through listening tests
• Problem: such dataset is always scarce…

DNN model
ScoreInput speech
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I am personally more
interested in this direction



Subjective SQA datasets (all with MOS labels)
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Name Speech type Language FS 
(kHz)

# samples
(train/dev)

BVCC TTS, VC, natural speech English 16 4944/1066
SOMOS TTS, natural speech English 24 14100/3000

SingMOS SVS, SVC, natural singing voice Mandarin, Japanese 16 2000/544

NISQA artificial distorted speech, real distorted 
speech, clean speech English 48 11020/2700 

TMHINT-QI artificial noisy speech, enhanced speech, 
clean speech Mandarin 16 11644/1293 

Tencent artificial distorted speech, clean speech Mandarin 16 10408/1155 

PSTN PSTN speech, artificial distorted speech English 8 52839/5870
W.-C. Huang, E. Cooper, and T. Toda, "MOS-Bench: Benchmarking generalization abilities of 
subjective speech quality assessment models," arXiv preprint arXiv:2411.03715, 2024



Evaluation of (DNN-based) SQA methods
• Four commonly used metrics to evaluate SQA

• MSE (mean squared error): Sensitive to large errors; penalizes outliers
• LCC (linear correlation coefficient): measures linear correlation
• SRCC (Spearman rank correlation coefficient): focuses on ordinal ranking
• KTAU (Kendall’s Tau correlation coefficient): more robust than SRCC for small datasets

• There are two main usage of SQA methods
• Compare a lot of systems (ex., evaluation in scientific challenges)

• Ranking-related metrics are preferred (LCC, SRCC, KTAU)
• Evaluate absolute goodness of a system (ex., objective function in training)

• Numerical metrics are preferred (MSE)
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SQA for non-synthetic speech: Quality-Net

• Non-intrusive
• Learning target: PESQ
• Evaluation target: noise suppressors
• Model architecture: BLSTM
• Training data: noisy speech
• Contributions: pioneer work on DNN-based SQA
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S.-W. Fu, Y. Tsao, H.-T. Hwang, and H.-M. Wang, “Quality-Net: An end-to-end non-intrusive 
speech quality assessment model based on BLSTM,” in Proc. Interspeech, 2018.
Google scholar citations: 209



SQA for non-synthetic speech: DNSMOS

• Non-intrusive
• Learning target: human judgement
• Evaluation target: noise suppressors
• Model architecture: CNN
• Training data: noise-suppressed speech
• Contributions: trained on crowdsourced

human preference data; easy-to-use API
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Chandan K. A. Reddy, Vishak Gopal, and Ross Cutler, “DNSMOS: A non-intrusive perceptual 
objective speech quality metric to evaluate noise suppressors,” in Proc. ICASSP, 2021.
Google scholar citations: 344

(Deep Noise Suppression MOS?)



SQA for non-synthetic speech: NISQA

• Non-intrusive
• Learning target: human judgement
• Evaluation target: noise suppressors
• Model architecture: CNN
• Training data: 59 distorted speech datasets
• Contributions: released a large-scale

human preference data; released
pre-trained model weights and code

G. Mittag, B. Naderi, A. Chehadi, and S. M ̈oller, “NISQA: A deep CNN-self-attention model for 
multidimensional speech quality prediction with crowdsourced datasets,” in Interspeech, 2021, 
Google scholar citations: 286 19

Good performance across many telephony datasets

(Non-Intrusive
Speech Quality Assessment)



SQA for non-synthetic speech: TorchAudio-Squim

• Non-intrusive & intrusive with human judgement & STOI, PESQ, SI-SDR
• Evaluation target: noise suppressors
• Model architecture: DPRNN & Transformers
• Training data: DNS Challenge 2020
• Contributions: relatively new (2023); tight integration with TorchAudio

A. Kumar, K. Tan, Z. Ni, P. Manocha, X. Zhang, E. Henderson, and B. Xu, “Torchaudio-squim: 
Reference-less speech quality and intelligibility measures in torchaudio,” in Proc. ICASSP, 2023
Google scholar citations: 52 20

(TorchAudio-Speech QUality and Intelligibility Measures)



SQA for synthetic speech: AutoMOS

• Non-intrusive
• Learning target: human judgement
• Evaluation target: TTS 
• Model architecture: LSTM
• Training data:

36 TTS systems, 168086 scores
• Contributions:

very first DNN-based work
for synthetic speech

B. Patton, Y. Agiomyrgiannakis, M. Terry, K. Wilson, R. A. Saurous, and D. Sculley, “AutoMOS: 
Learning a non-intrusive assessor of naturalness-of-speech,” in NIPS 2016 Workshop.
Google scholar citations: 109 21

Baseline AutoMOS GT
Utt-RMSE 0.553 0.462 0.512
Utt-LCC 0.454 0.668 0.764
Utt-SRCC 0.399 0.667 0.757
Sys-RMSE 0.132 0.073 0.034
Sys-LCC 0.795 0.938 0.987
Sys-SRCC 0.679 0.949 0.986

Very close to human!



SQA for synthetic speech: MOSNet

• Non-intrusive
• Learning target: human judgement
• Evaluation target: VC
• Model architecture: CNN & LSTM
• Training data:

Voice Conversion Challenge 2018
• Contributions:

one of the first works with pre-trained
model & easy-to-beat performance

C.-C. Lo, S.-W. Fu, W.-C. Huang, X. Wang, J. Ya- magishi, Y. Tsao, and H.-M. Wang, “MOSNet: 
Deep Learning-Based Objective Assessment for Voice Con- version,” in Proc. Interspeech
2019, 2019, pp. 1541– 1545.
Google scholar citations: 352
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Decent 
correlation!



SQA for synthetic speech: SSL-MOS

• Non-intrusive
• Learning target: human judgement
• Evaluation target: BVCC
• Model architecture: SSL (wav2vec 2.0)
• Training data: BVCC
• Contributions:

one of the first SSL-based SQA works
with pre-trained model
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E. Cooper, W.-C. Huang, T. Toda, and J. Yamagishi, “Generalization ability of MOS prediction 
networks,” in Proc. ICASSP, 2022
Google scholar citations: 175



SQA for synthetic speech: SQuID

• Non-intrusive
• Learning target: human judgement
• Evaluation target: internal dataset
• Model architecture: SSL (mSLAM)
• Training data: internal TTS samples

(~1M samples, 1476 systems)
• Contributions:

first massive multi-lingual
subjective SQA work
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T. Sellam, A. Bapna, J. Camp, D. Mackinnon, A. P. Parikh, and J. Riesa, “SQuId: Measuring 
speech naturalness in many languages,” in Proc. ICASSP, 2023
Google scholar citations: 26

⇦
Results on SQuID dataset:
Using SQuID boosts!

⇩Broken down by locale

(Speech Quality IDentification)



SQA for synthetic speech: RAMP

• Non-intrusive. Learning target: human judgement
• Training data: BVCC; Evaluation target: BVCC, SOMOS
• Model architecture: SSL + retrieval
• Contributions: top-performing system in VoiceMOS Challenge 2023, 2024

25

(Retrieval Augmented MOS Prediction)

H.Wang,S.Zhao,X.Zheng,andY.Qin,“RAMP:Retrieval-Augmented MOS Prediction via 
Confidence-based Dynamic Weighting,” in Proc. Interspeech, 2023, pp. 1095–1099. 



Experiences and lessons from the 
VoiceMOS Challenge Series
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The goal of the VoiceMOS challenge (VMC) series
(or any scientific challenge)
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Advertise the research of
automatic data-driven 

MOS prediction for speech

Compare different approaches 
using shared datasets and 

evaluation protocols

Promote discussion
about the future of 
this research field

https://sites.google.com/view/voicemos-challenge

https://sites.google.com/view/voicemos-challenge


The whole VMC series is about generalization

• In-domain (ID) & out-of-domain (OOD) generalization:
test & train data are of the same/different distribution

• In practical situations for SQA, we should always assume it’s OOD
• Synthetic speech: different TTS system, different listening test, …
• Non-synthetic speech: different distortion types, levels, combinations, …

• Ultimate goal: an “almighty” system that excels in all speech types

28



The history of VMC

• The VoiceMOS Challenge 2022 @ INTERSPEECH
• In-domain prediction for synthetic speech (TTS, VC)
• Results: best system achieved 0.939 SRCC

• The VoiceMOS Challenge 2023 @ ASRU
• Fully out-of-domain setting on singing voice conversion, French TTS, noisy speech
• Results: reconfirmed that OOD generalization is an issue

• The VoiceMOS Challenge 2024 @ SLT
• Zoomed-in tests, singing conversion/synthesis, semi-supervised SQA

• The AudioMOS Challenge 2025 @ ASRU
• Expand to general audio: text-to-speech/audio/music; different speech frequencies

29

ongoing!



VMC 2022: tracks

• Main track: BVCC
• Samples from 187 different systems all rated together in one listening test

• Past Blizzard Challenges (for TTS) 2008 - 2018
• Past Voice Conversion Challenges (for voice conversion) 2016 - 2020
• ESPnet-TTS (implementations of modern TTS systems), 2020

• Test set is split from the training set ⇨ in-domain
• Contains some unseen systems/listeners/speakers

• OOD track: Blizzard Challenge 2019
• Chinese TTS samples from systems submitted to the 2019 Blizzard Challenge
• Test set is split from the training set ⇨ in-domain

• Contains unseen systems/listeners 

30

Probably a bad naming…
“limited-data” track might be better L



VMC 2022: results
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J Improvements over baseline
J Good performance even with 136 samples only 

⇨ in-domain is probably “too simple”?



VMC 2022 top system: UTMOS
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T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi, and H. Saruwatari, “UTMOS: UTokyo-
SaruLab System for VoiceMOS Challenge 2022,” in Proc. Interspeech, 2022, pp. 4521–4525.
Google scholar citations: 229

• Main track system: “slightly improved SSL-MOS” (according to 1st author)
• OOD track: ensemble of weak learners using stacking



VMC 2022: feedback
• About the dataset

• Test set is too small
• Is the number of samples per system enough? (T06)

• What do you want to see in the next challenge?
• Other speech types

• Telephone, conference, speech coding (low bitrate, neural coding), noisy speech (most requested)
• Music, dialogue TTS, high-quality TTS, speaker similarity, confidence

• More languages (4 participants)
• Other listening test types (A/B preference tests, MUSHRA tests, or simply predict the 

ranking)
• Higher sampling rate (16000 Hz is too low, at least 22050/24000)
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VMC 2023: tracks 

• Track 1: Blizzard Challenge 2023 - French TTS
• Track 2: Singing Voice Conversion Challenge - singing voice conversion
• Track 3: Mandarin noisy & enhanced speech

• Real-world and challenging MOS prediction in collaboration with ongoing 
synthesis competitions.
• Teams submit their predictions before the actual listening test results have been 

collected.
• Thus, no official training data!
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VMC 2023: results
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J Some systems beat the baselines
L Difficult to predict all domains well with a single system



VMC 2024: tracks

• Track 1: MOS prediction for “zoomed-in” systems
• Motivation: evaluate synthetic systems of high-quality

• Track 2: MOS prediction for singing voice
• Using the SingMOS dataset: natural singing voices, vocoder analysis-synthesis, singing 

voice synthesis/conversion samples
• Track 3: semi-supervised MOS prediction for clean/noisy/enhanced speech

• Setting: very limited amount of training data & zero-shot setting
• Beyond quality: speech signal quality (SIG), background intrusiveness (BAK), overall 

quality (OVRL)
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VMC 2024: results
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J Some systems beat the baselines
L We had less participants this year, thus less insights…



AMC 2025: tracks

• Track 1: MOS prediction for text-to-music systems
• Based on the MusicEval dataset: clips from 31 TTM systems
• Ratings from music experts
• Two evaluation axes: overall musical impression, textual alignment

• Track 2: Audiobox-aesthetics-style prediction for text-to-speech, text-to-
audio and text-to-music systems
• Based on the Meta Audiobox Aesthetics
• Train data: natural speec/audio/music samples; test data: TTS/TTA/TTM samples

• Track 3: MOS prediction for speech in high sampling frequencies
• Speech samples from 16/24/48 kHz

38

https://sites.google.com/view/voicemos-
challenge/audiomos-challenge-2025

Stay tuned for the challenge summary!

https://arxiv.org/abs/2501.10811
https://arxiv.org/abs/2502.05139
https://sites.google.com/view/voicemos-challenge/audiomos-challenge-2025
https://sites.google.com/view/voicemos-challenge/audiomos-challenge-2025


Ongoing work and unexplored 
problems
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Towards zero-shot, general purpose SQA

• Common idea: how about we combine multiple datasets (and their scores)?
• Problem: “corpus effect”

• Same type of speech can receive different scores on different listening tests
• Stems from the “relative” nature of listening tests like MOS

• Recent representative work: AlignNet
• Use a dataset embedding (indicator)

to learn the bias in each dataset

40

J. Pieper and S. Voran, “Alignnet: Learning dataset score alignment functions to enable 
better training of speech quality estimators,” in Proc. Interspeech, 2024, pp. 82–86.



Alternative solution 1: unsupervised SQA

• SQA models are usually supervised: need to be trained with <speech, score>
• New speech type ⇨ human label needed. Costly!

• Popular idea: learn a prior model with the concept of “natural speech”
• Representative work: SpeechLMScore

• Perplexity of an input speech in the
discrete speech token space

• What’s the advantage?
• No training = no overfitting = better generalization!

41

S. Maiti, Y. Peng, T. Saeki, and S. Watanabe, “SpeechLMScore: Evaluating speech generation 
us- ing speech language model,” in Proc. ICASSP, 2023



Alternative solution 2: learn from preference data
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• Preference test can be speeded up with online learning
• Automatically stops comparing systems

that are obviously different in quality

• Learning from preference data alleviates biases in MOS
• Listener preference bias, equal-ranging bias
• Result: better generalization ability (both in-domain and OOD!)

Y. Yasuda, and T. Toda. "Automatic design optimization of preference-based subjective 
evaluation with online learning in crowdsourcing environment," arXiv preprint 
arXiv:2403.06100 (2024).

C.-H. Hu, Y. Yasuda, and T. Toda. "E2EPref: An end-to-end preference-based framework for 
speech quality assessment to alleviate bias in direct assessment scores," Computer Speech 
& Language, vol. 93, 2025



Evaluation dimensions beyond general quality

• Many attempts to learn from subjective speaker similarity data
• Dataset: VoxSim

• Derived from VoxCeleb; 41k utterance pairs, nearly 70k ratings
• Model: SVSNet

43

C.-H. Hu, Y.-H. Peng, J. Yamagishi, Y. Tsao, and H.- M. Wang, “SVSNet: An End-to-End Speaker 
Voice Similarity Assessment Model,” IEEE Signal Processing Letters, vol. 29, pp. 767–771, 2022. 

J. Ahn, Y. Kim, Y. Choi, D. Kwak, J.-H. Kim, S. Mun, and J. S. Chung, “VoxSim: A perceptual 
voice similarity dataset,” in Proc. Interspeech, 2024.

What about other dimensions
⇨ Emotion, expressiveness, accent, 

non-verbal content…

L Current results are not significantly better than simple 
cosine similarity of speaker embeddings (ex., x-vectors)



Interpretable/explainable SQA

• A recent trend: use LLMs for SQA
• “Audio captioning” but focusing on quality
• More than just “another LLM application”!

• Provide “explanations” beyond just “scores”
• Localized evaluation (when & where)
• Attributed evaluation (what & how)
⇨ No extinction between synthetic/non-synthetic speech!

• Evaluation is the problem
• Natural language description

= larger variance compared to scores

44

Wang, S., Yu, W., Chen, X., Tian, X., Zhang, J., Tsao, Y., ... & Zhang, C, “QualiSpeech: A Speech 
Quality Assessment Dataset with Natural Language Reasoning and Descriptions.” arXiv
preprint arXiv:2503.20290.

S. Wang, W. Yu, Y. Yang, C. Tang, Y. Li, J. Zhuang, X. Chen, X. Tian, J. Zhang, G. Sun, et al, 
“Enabling auditory large language models for automatic speech quality evaluation,” in 
Proc. ICASSP, 2025

C. Chen, Y. Hu, S. Wang, H. Wang, Z. Chen, C. Zhang, C.-H. Huck Yang, and E. S. Chng, “Audio 
large language models can be descriptive speech quality evaluators,” in Proc. ICLR, 2025

IMO: the ultimate goal in SQA



Status quo in text-to-audio/text-to-music evaluation 
is mostly objective
• Fréchet audio distance (FAD): evaluates general audio fidelity

• Set-wise comparison (not sample-wise); calculates statistics in an embedding space
• Critiques: embedding-sensitive; sample size-sensitive; correlates poorly with perception
• Improved attempts: KAD, MMD

• CLAP score: evaluates alignment between audio and text prompt
• Cosine similarity between text embedding and audio embedding
• Critique: correlates poorly with perception

45

Trend: more and more articles criticizing the 
inconsistency of these metrics
⇨ not completely the metrics’ fault… the 
“one-to-many” problem is just too difficult!

https://www.isca-archive.org/interspeech_2019/kilgour19_interspeech.pdf
https://arxiv.org/pdf/2403.17508
https://arxiv.org/pdf/2311.01616
https://arxiv.org/pdf/2209.00130
https://arxiv.org/pdf/2502.15602
https://arxiv.org/pdf/2503.16669
https://arxiv.org/pdf/2301.12661


Concluding remarks

• Taxonomy in SQA
• Evaluation target: synthetic speech / non-synthetic speech
• Subjective / objective
• Intrusive / non-intrusive
• Signal-based / model-based

• Long-standing challenge: out-of-domain generalization (= all-purpose)
• Important theme of the Voice/AudioMOS Challenge series

• Sooooo many unsolved (and interesting!) problems, even beyond speech!
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Advertisements

• I have co-authored a review paper on SQA for synthetic speech
• Mostly done with the amazing Erica Cooper (NICT, Japan)
• E. Cooper, W.-C. Huang, Y. Tsao, H.-M. Wang, T. Toda, and J. Yamagishi, “A review on 

subjective and objective evaluation of synthetic speech,” Acoustical Science and 
Technology, vol. 45, no. 4, pp. 161–183, 2024.

• I will co-present a tutorial in INTERSPEECH 2025, also on the title “"Automatic 
Quality Assessment for Speech and Beyond”
• With Erica Cooper and Jiatong Shi (CMU, USA)
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https://www.jstage.jst.go.jp/article/ast/45/4/45_e24.12/_pdf
https://www.interspeech2025.org/tutorials

